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Pharmacological targeting of bone marrow
mesenchymal stromal/stem cells for the
treatment of hematological disorders
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Abstract

The therapeutic effects of mesenchymal stromal/stem cells (MSCs) are mainly based on three characteristics:
immunomodulation, tissue regeneration, and hematopoietic support. Cell therapy using culture-expanded MSCs
is effective in some intractable bone and hemato-immune disorders; however, its efficacy is limited. In this article,
we review the previous efforts to improve the clinical outcomes of cell therapy using MSCs for such disorders.
We describe pharmacological targeting of endogenous bone marrow-derived MSCs as a crucial quality-based
intervention to establish more effective MSC-based therapies.
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Background
There are two types of multipotent cells in bone mar-
row (BM): hematopoietic stem/progenitor cells (HSCs)
and mesenchymal stromal/stem cells (MSCs). HSCs
produce all types of hematopoietic cells and are estab-
lished as a central player in BM. MSCs support
hematopoiesis in the BM microenvironment and have
been considered to be a second-class player in BM, des-
pite their ability to differentiate into a variety of mesen-
chymal cells [1–4]. Nevertheless, emerging evidence
has revealed the active contribution of BM-derived
MSCs (BM-MSCs) to the pathogenesis of hematological
diseases. More importantly, culture-expanded MSCs
are practically available in clinics as off-the-shelf stem
cell products for the treatment of some intractable
refractory diseases. This review describes the basic
characteristics of human MSCs and their clinical appli-
cations in the past and present and looks ahead toward
the new horizon of MSC-based therapy.
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Main text
Characteristics of human MSCs
The International Society of Cellular Therapy (ISCT)
has proposed the following minimal criteria of human
MSCs to define their characteristics [5]: (1) the ability to
adhere to plastic plates; (2) the ability to differentiate
into osteoblasts, adipocytes, and chondroblasts in vitro;
and (3) the positive surface expression of CD105, CD73,
and CD90 in the absence of surface human leukocyte
antigen (HLA)-DR molecules and hematopoietic lineage
markers of pan-leukocytes (CD45), endothelial/primitive
cells (CD34), myeloid lineage cells (CD14 or CD11b),
and B cell lineage cells (CD79α or CD19). MSCs are iso-
lated from various tissues/organs via diverse methods in
multiple institutions [6, 7]. Therefore, it is critical to de-
termine the common characteristics of MSCs in order to
discuss clinical and basic studies using these cells. The
minimal criteria for MSCs proposed by the ISCT are
appropriate for product identity but have no relevance
to functions including hematopoietic support, immuno-
modulation, and tissue regeneration (Fig. 1).
There are two principal methods to isolate MSCs:

classical isolation and prospective isolation. The classical
isolation method selects cells that adhere to plastic
dishes and form colonies. This method is simple and
convenient; however, the isolated cells are heterogeneous.
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Fig. 1 The main characteristics of MSCs. MSCs are multipotent stromal
cells that have the ability to modulate the immune system, support
hematopoiesis, and repair damaged tissues. These characteristics are
applied to treat acute GVHD and Crohn’s disease, to regenerate bone,
and to induce engraftment and recovery of hematopoiesis by infusing
ex vivo expanded MSCs
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The prospective isolation method is based on cell sorting
using surface markers that are expressed on MSCs [8, 9].
This method has the advantage of isolating a homogenous
and high-quality cell population. According to the data-
base provided by the National Institutes of Health
(USA) at http://www.clinicaltrials.gov/, the conventional
isolation method has been generally used in clinical
trials using MSCs.

Clinical applications of human MSCs
Acute graft-versus-host disease (GVHD)
A substantial proportion of patients who undergo allo-
geneic hematopoietic stem/progenitor cell transplant-
ation (HSCT) develop intractable acute graft-versus-host
disease (GVHD). The European Group for Blood and
Marrow Transplantation conducted a multi-institutional
phase II study and showed that infusion of MSCs from
multiple donor sources conferred an overall response
rate of 71% (39 of 55 cases), with a complete response
rate of 55% and a partial response rate of 16%, in cases
with steroid-resistant acute GVHD [10]. The 2-year
overall survival rate in cases with a complete response
was 52%, which was better than that in historical con-
trols (about 10%). These results suggested that intraven-
ous infusion of MSCs is an effective therapy for patients
with steroid-resistant acute GVHD.
In clinical trials using commercial off-the-shelf MSC

products, their infusion was tolerable overall and they
showed an efficacy to improve acute GVHD, especially
in pediatric patients and gastrointestinal GVHD patients
[11–15]. However, the preliminary results of a phase III
study that was conducted outside of Japan showed that
infusion of MSCs had an initial effect, but conferred no
significant advantage in the longer term for acute GVHD
patients [16]. A recent meta-analysis of 13 studies (336
patients) revealed that 241 (72%) patients achieved an
overall response, with a 6-month overall survival rate of
63% in responders versus 16% in non-responders [17].
The overall response rate of individual organs was 49%
for the gastrointestinal tract, 49% for the skin, and 28%
for the liver. Although MSCs are certainly effective for
the treatment of acute GVHD, the results of long-term
follow-up are needed.

Skeletal disorders
Osteogenesis imperfecta (OI) is an inherited skeletal dys-
plasia characterized by osteopenia and frequent bone
fractures. The molecular mechanism underlying this dis-
ease is a defect of type I collagen (COL1a1 and COL1a2)
in progenies of MSCs, namely, osteoblasts. Allogeneic
BM transplantation effectively improved the histological
and clinical manifestations of OI in children [18, 19].
However, the engraftment of donor cells was not en-
sured via this strategy. In 2005, Le Blanc et al. performed
in utero transplantation (IUT) of MSCs into a female
fetus with severe OI [20]. A bone biopsy after delivery
showed the engraftment of donor cells, suggesting that
IUT is a promising strategy to solve the problem of
engraftment and settlement of donor-derived MSCs.
Hypophosphatasia (HPP) is an inherited metabolic dis-

order characterized by low alkaline phosphatase activity
and impaired bone formation. BM transplantation tran-
siently improved the clinical features of HPP, but a boost
of donor BM cells was required [21]. Tadokoro et al. re-
ported successful BM and MSC transplantation into an
8-month-old patient with perinatal HPP [22]. Subse-
quently, the same group reported that transplantation of
ex vivo expanded allogeneic MSCs following BM trans-
plantation improved bone mineralization, muscle mass,
respiratory function, and mental development in patients
with HPP [23]. Combined BM and MSC transplantation
may be effective to prevent the rejection of allogeneic
donor-derived MSCs.
Cell therapy using MSCs has been applied for bone re-

generation in adults. One important application is the
repair of bone fractures or defects due to malignant
bone tumors or external injuries. Quatro et al. reported
three cases of successful autologous BM stromal cell
transplantation to treat large bone defects in the tibia,
ulna, and humerus [24]. They expanded osteoprogenitor
cells isolated from BM cells and implanted them into
the lesion sites with macroporous hydroxyapatite scaf-
folds. All three patients achieved improvement of bone
function and radiographic examination findings. Follow-
ing this report, many studies of local MSC transplant-
ation for bone repair were conducted. However, the
osteogenic differentiation potential of implanted MSCs
in defected lesions was not certified in these reports.

http://www.clinicaltrials.gov/
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Hematopoietic engraftment and recovery after HSCT
Attempts have been made to use MSCs to support
hematopoiesis upon HSCT. For this purpose, two major
interventions were applied: co-transplantation of HSCs
and MSCs and transplantation of HSCs that were ex-
panded ex vivo in the presence of MSCs.
In an early phase I/II trial of co-transplantation of au-

tologous peripheral blood stem/progenitor cells (PBSCs)
and culture-expanded autologous MSCs in advanced
breast cancer patients that received high-dose chemo-
therapy, engraftment was effectively accelerated [25].
Following this report, clinical trials of co-transplantation
of allogeneic BM or PBSCs and MSCs for patients
with hematological malignant diseases were conducted
(Table 1) [26–28]. Lazarus et al. co-administered HSCs and
culture-expanded MSCs from the same donor (HLA-iden-
tical siblings) after myeloablative conditioning; however,
acceleration of engraftment was not observed [26]. Le
Blanc et al. conducted a pilot study of co-transplantation
of MSCs and HSCs for patients with graft failure [27]. All
patients achieved engraftment, indicating that such co-
transplantation improves engraftment of cells from the sec-
ond donor in salvage HSCT. MacMillan et al. reported that
co-transplantation of MSCs supported rapid engraftment
of unrelated cord blood cells in children with high-risk
leukemia [28]. In summary, although co-transplantation of
MSCs is not effective in a standard risk transplantation
setting, it could be effective in cases of engraftment failure
or delayed hematopoietic recovery, such as HSCT from
HLA-haploidentical donors, cord blood transplantation,
and retransplantation.
MSCs support the expansion of cord blood cells

in vitro [29]. de Lima et al. studied whether cord blood
cells culture-expanded in the presence of MSCs effect-
ively induce hematopoietic recovery upon double cord
blood cell transplantation [30]. Cord blood cells from
one unit with a smaller cell number were expanded in
co-culture with MSCs. These manipulated cells were
Table 1 Clinical studies of co-infusion of MSCs with HSCs for he
transplantation

Number of
patients

Median age of
patients, years
(range)

HSC donor MSC donor M
(×

46 44.5 (19–61) HLA-matched sibling HSC donor 1

7 12 (1–44) HLA-matched sibling
in three cases
Unrelated donor in
three cases
Cord blood in one
case

HLA-matched sibling
or HLA-haploidentical
donor

1

8 7.5 (0.25–16) Cord blood HLA-haploidentical
parent

0

HLA human leukocyte antigen, HSC hematopoietic stem/progenitor cell, MSC mesen
co-transplanted with non-manipulated cord blood cells
from another unit with a larger cell number. The time-
to-engraftment of neutrophils and platelets was shorter
in these patients than in the historical controls, indicat-
ing that ex vivo expansion of cord blood cells with
MSCs is an effective strategy to improve engraftment.

Pharmacological targeting of endogenous BM-MSCs
In most clinical trials using allogeneic human MSCs,
these cells were isolated from tissues/organs of volunteer
donors, culture-expanded ex vivo, and intravenously in-
fused into recipients. This intervention is a “quantity”-
based approach to achieve therapeutic effects of MSCs.
However, ex vivo expansion of MSCs might change their
characteristics and reduce their quality. More import-
antly, a substantial proportion of intravenously infused
donor MSCs become trapped within the lungs and are
not distributed to the damaged tissues/organs of recipi-
ents [31]. There is obviously a limitation in the current
strategy employed for cell therapy using MSCs because
their effects are not dependent on the sustained settle-
ment of infused cells or on proximate interactions with
the target cells [32].
In a series of preclinical studies using model mice, we

suggested that pharmacological treatment modifies the
functions of endogenous BM-MSCs to achieve their
therapeutic effects (Table 2) [33–37]. Acetylsalicylic acid
(ASA), also known as aspirin, is a medication used to
treat pain, fever, and inflammation. These therapeutic
effects are mediated through inhibition or modification
of cyclooxygenases [38, 39]. We showed that treatment
with ASA ameliorates bone loss in osteoporotic mice
due to the increased bone-forming capability of ASA-
treated BM-MSCs [33]. Telomerase activity is enhanced
in ASA-treated BM-MSCs [33]. This observation is con-
sistent with a previous report that ASA contributes to
the improvement of bone mineral density, although the
contribution of MSCs is unknown [40]. These preclinical
matopoietic recovery after hematopoietic stem/progenitor cell

SC dose
106/kg)

Median time for
Neut recovery
(range)

Median time for Plt
recovery (range)

Reference

.0, 2.5, or 5.0 Neut >500/μl at
day 14 (11–26)

Plt >20,000/μl at
day 20 (15–36)

[26]

.0 Neut >500/μl at
day 12 (10–28)

Plt >30,000/μl at
day 12 (8–36)

[27]

.9–5.0 Neut >500/μl at
day 19 (9–28)

Plt >50,000/μl at day 53
(36–98)

[28]

chymal stromal/stem cell, Neut neutrophil, Plt platelet



Table 2 The effects of pharmacological treatment of MSCs

Drug Target cells Clinical effect MSC-mediated
hematopoiesis

MSC-mediated bone
regeneration

Mechanism(s) in MSCs References

ASA Broad cells Anti-inflammation N/T ↑ Telomerase activity↑ [33]

EPO Erythroid progenitors Erythropoiesis ↑ ↑ EPOR/Stat5 pathway↑ [34]

PTH Osteoblasts/Osteoclasts Osteoporosis ↑ → CDH11 expression↑ [35]

VK2 Osteoblasts Osteoporosis ↑ ↑ CXCL12 expression↓ [37]

OICS N/A Osteoporosis ↑ → CXCL12 and VCAM1
expression↓

[36]

Up arrows indicate up-regulation or activation. Down arrows indicate down-regulation or inactivation
ASA acetylsalicylic acid (aspirin), EPO erythropoietin, EPOR erythropoietin receptor, MSC mesenchymal stromal/stem cell, N/T not tested, OICS osteo-inductive
cocktail (dexamethasone, phosphate, and vitamin C ), PTH parathyroid hormone, VCAM1 vascular cell adhesion protein 1, VK2 vitamin K2
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and clinical studies indicate the efficacy of ASA treat-
ment for bone repair in patients with skeletal disorders
through activation of endogenous BM-MSCs.
Parathyroid hormone (PTH) is clinically used to treat

osteoporosis because it has anabolic effects on bone for-
mation though activating osteoblasts [41]. We demon-
strated that short-term administration of PTH prolongs
the survival of lethally irradiated mice that undergo BM
transplantation, which is accompanied by enhanced
hematopoietic marrow formation in BM [35]. PTH acts
on human BM-MSCs to enhance their hematopoietic
cell expansion capability through upregulation of the
adhesion molecule cadherin-11 in BM-MSCs [35]. In
another study, we showed that an erythropoiesis-
stimulating agent, erythropoietin, acts on human BM-
MSCs to enhance not only bone formation but also
hematopoietic marrow formation in vivo, by using ec-
topically xeno-grafted mice [34]. The erythropoietin re-
ceptor/Stat5 pathway is enhanced in BM-MSCs as well
as in erythroblast progenitor cells [34, 42]. Vitamin K2
(VK2) is clinically approved for the treatment of pa-
tients with osteoporosis. It is known that VK2 improves
Fig. 2 MSC-based therapy with pharmacological modification of endogeno
culture-expanded ex vivo, and then infused into recipients, mainly intravenousl
effects of MSCs (left panel). We have proposed a strategy in which pharmacolo
This intervention is a “quality”-based strategy to achieve the therapeutic effects
hematopoiesis in some patients with hematological dis-
eases although the underlining mechanisms are not
fully understood [43, 44]. In our study, the expression
of CXCL12 in VK2-treated BM-MSCs was low, which
suggested that CXCL12-CXCR4-mediated interaction
between BM-MSCs and HSCs is released, thereby HSCs
expand and differentiate into mature hematopoietic
cells [37].
We have proposed that pharmacological targeting of

endogenous MSCs is a quality-based intervention to
achieve therapeutic effects in patients (Fig. 2). This strat-
egy may enhance the therapeutic capability of MSCs to
act closely on target cells through secretion of soluble
factors and adherence in microenvironments, without
requiring the redistribution of externally infused MSCs
to damaged tissues/organs. However, attention needs to
be paid to unexpected off-target effects of drugs in
patients. To avoid this, we have sought drugs that act
on MSCs and elicit therapeutic effects among com-
pounds developed for medical purposes. We believe
that this drug repositioning strategy shortens the drug
development period, reduces medical costs, and provides
us MSCs. In a conventional approach, MSCs are isolated from donors,
y. This intervention is a “quantity”-based strategy to achieve the therapeutic
gical treatment activates or modifies the functions of endogenous MSCs.
of MSCs (right panel)
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patients with safe medications. In addition, there is a pos-
sibility that the characteristics of MSCs in patients might
be affected [45]. Therefore, pharmacological stimulation
of such affected MSCs may have unexpected effects on
the pathogenesis of diseases. Thus, further investigations
are needed to establish a quality-based, pharmacological,
MSC-targeted strategy.

Perspectives of MSC-based therapy
We recently reported that short-term treatment with as-
corbic acid, inorganic phosphate, and dexamethasone
(osteogenesis-inducing cocktails) accelerates hematopoietic
recovery in mice that undergo BM transplantation, with al-
tered chemotaxis- and adhesion-related gene expression
profiles in BM-MSCs [36]. As well as treatment with a sin-
gle pharmacological agent, combination treatment is also
effective to achieve a therapeutic effect.
Recent studies reveal that MSCs are associated not

only with normal hematopoiesis but also with the patho-
genesis and progression of hematological malignant dis-
eases. Our laboratory previously reported that defective
MSCs are responsible for the impaired physiological early B
cell lymphopoiesis in C/EBPβ-knockout mice [46]. Further-
more, MSC-mediated resistance to anti-cancer drugs in B
cell precursor acute lymphoblastic leukemia cells can be
ameliorated by pharmacological treatment of MSCs [47].
Raaijmakers et al. showed that deletion of Dicer1 in mouse
osteoprogenitors causes myelodysplasia [48]. Balderman
et al. suggested a novel therapeutic strategy to target the
BM microenvironment for the treatment of myelodysplastic
syndromes using model mice [49]. Collectively, the BM
microenvironment is closely related to the pathogenesis
and progression of hematological malignant diseases; there-
fore, targeting MSCs in this microenvironment is a crucial
therapeutic strategy.

Conclusions
MSCs have a variety of biological characteristics. Cell
therapy using MSCs is effective in a substantial proportion
of intractable diseases; however, it is still in the process of
development. Further investigations are needed to estab-
lish more effective MSC-based therapies.
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