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Abstract

Receptor activator of NF-κB (RANK) ligand (RANKL) induces the differentiation of monocyte/macrophage–lineage
cells into the bone–resorbing cells called osteoclasts. Because abnormalities in RANKL, its signaling receptor RANK,
or decoy receptor osteoprotegerin (OPG) lead to bone diseases such as osteopetrosis, the RANKL/RANK/OPG
system is essential for bone resorption. RANKL was first discovered as a T cell-derived activator of dendritic cells
(DCs) and has many functions in the immune system, including organogenesis, cellular development. The
essentiality of RANKL in the bone and the immune systems lies at the root of the field of “osteoimmunology.”
Furthermore, this cytokine functions beyond the domains of bone metabolism and the immune system, e.g.,
mammary gland and hair follicle formation, body temperature regulation, muscle metabolism, and tumor
development. In this review, we will summarize the current understanding of the functions of the RANKL/RANK/
OPG system in biological processes.
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Background
The original identification of the RANKL/RANK/OPG triad
took place in the late 1990s [1]. Receptor activator of NF-κB
(RANK) ligand (RANKL) and its receptor RANK were dis-
covered in the field of immunology [2]. In the first report, a
novel cytokine of the tumor necrosis factor (TNF) family
was shown to be highly expressed in T cells in response to T
cell receptor (TCR) signaling, and was termed tumor necro-
sis factor (TNF)-related activation-induced cytokine (TRAN
CE) [3]. At almost the same time, another group cloned the
receptor gene using a human dendritic cell (DC) cDNA li-
brary and its ligand, using a cDNA library of a murine thym-
oma cell line. In this study, the pair of the ligand and its
receptor was designated as RANKL and RANK. The authors
demonstrated that RANK expression is induced on differen-
tiated CD4+ T cells and CD40 ligand (CD40L)-stimulated
mature DCs, and that RANKL stimulation enhances T cell
proliferation and T cell-DC interaction [4]. Both RANKL
and RANK were shown to be crucial for the development of
osteoclasts and the lymph nodes (LNs) [5, 6].

Osteoprotegerin (OPG) and osteoclastogenesis inhibitory
factor (OCIF) were discovered as the result of the search
for osteoclastogenesis–inhibiting factors, and later turned
out to be the same molecule [7, 8]. Soon after the discovery,
binding partners for OPG, OPG ligand (OPGL), and osteo-
clast differentiation factor (ODF) were identified [9, 10]. It
was later shown that both OPGL and ODF were identical
to RANKL. The ODF receptor (ODFR) was shown to be a
signaling receptor for ODF and identical to RANK [11].
The triad of the ligand/signaling receptor/decoy receptor is
now called RANKL/RANK/OPG.
The studies above together with later studies revealed

the pivotal roles of RANKL, RANK, and OPG in both
bone metabolism and the immune system. In addition,
these molecules have been shown to be involved in di-
verse physiological and pathological contexts.

The structures of RANKL/RANK/OPG
RANKL, RANK, and OPG belong to the TNF and its receptor
superfamilies. As a TNF superfamily molecule, RANKL forms
a homotrimer and binds to its receptors. RANK and OPG act
as a monomer and homodimer, respectively. The crystal
structures of the RANK–RANKL and OPG–RANKL complex
have been resolved at 2.7 Å resolution [12].
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RANKL
The human RANKL gene (gene symbol: TNFSF11) is lo-
cated on chromosome 13 (13q14.11) and encodes a glyco-
protein with 317 amino acids. Human and mouse RANKL
share 85% identity in their amino acid sequences. RANKL
belongs to the TNF cytokine superfamily. RANKL is a
type II transmembrane protein with an extracellular do-
main at the carboxy–terminus [1, 2]. This ectodomain is
cleaved by enzymes such as matrix metalloproteinases and
released to the extracellular environment as soluble
RANKL. Both membrane-bound and soluble RANKL bind
to RANK, but the former seems to be more functionally
significant than the latter at present (see below) [13–17].

RANK
The human RANK gene (gene symbol: TNFRSF11A) is lo-
cated on chromosome 18 (18q21.33) and encodes a recep-
tor with 616 amino acids. Human and mouse RANK
share 66% identity in their amino acid sequences. RANK
belongs to the TNF receptor superfamily. The extracellu-
lar and intracellular domains of RANK contain four
cysteine-rich pseudorepeats at the amino–terminus and
three TRAF-binding domains at the carboxy–terminus,
respectively [1, 2]. RANK is mainly expressed in osteoclast
precursors, mature osteoclasts, and immune cells such as
DCs, macrophages, and microglia. A recent study demon-
strated that the osteoclast releases RANK-expressing
extracellular vesicles, which interact with the RANKL on
osteoblasts. The interaction results in the promotion of
bone formation by RANK–RANKL reverse signaling [18].

OPG
The human OPG gene (gene symbol: TNFRSF11B) is lo-
cated on chromosome 8 (8q24.12) and encodes a receptor
with 401 amino acids. Human and mouse OPG share 85%
identity in their amino acid sequences. OPG also belongs
to the TNF receptor superfamily. The domains of OPG
contain four cysteine-rich pseudorepeats at the amino-
terminus and two death domains at the carboxy-terminus,
respectively [1, 2]. OPG is exported into the extracellular
space as a soluble decoy receptor without any transmem-
brane structure.

RANKL in bone metabolism
Bone undergoes a cycle of osteoclastic bone resorption
and osteoblastic bone formation, i.e., the process of bone
remodeling. The osteoclast is a large multinucleated cell
that degrades the bone matrix with acid and catalytic en-
zymes. Osteoclasts are derived from monocyte/macro-
phage lineage cells by stimulation with the essential
cytokine for osteoclastogenesis, RANKL [2, 19].

Bone development
In bone tissue, RANKL is expressed by several types of
cells including osteoblasts, osteocytes and immune cells.
Among these cells, RANKL expression is higher in oste-
oblasts and osteocytes. In neonatal or young mice in
their growth period, hypertrophic chondrocytes in the
growth plate and osteoblasts are the major sources of
RANKL. In older mice, on the other hand, osteocytes
contribute more to RANKL expression (Fig. 1a) [20–22].
RANKL binds to its corresponding receptor RANK,
thereby inducing subsequent osteoclastogenic signals.

Hereditary bone diseases
Because of its essentiality in osteoclastogenesis, dysregula-
tion of RANKL signaling results in excessive or impaired
bone resorption, and certain therapeutic interventions in
such dysregulated signaling have been shown to be effect-
ive in the treatment of bone diseases [1]. Mutations in
genes encoding RANKL, RANK, and OPG lead to heredi-
tary bone diseases in human, such as autosomal recessive
osteopetrosis (ARO) [23, 24], familial form of early-onset
Paget’s disease of bone (PDB2) [25–27], familial expansile
osteolysis (FEO) [26, 28–30], expansile skeletal hyperpho-
sphatasia (ESH) [31], panostotic expansile bone disease
(PEBD) [32], and the Juvenile Paget’s disease (JPD, or idio-
pathic hyperphosphatasia, IH) [32–37]. Mutations found
in these diseases are summarized in Table 1.

Bone remodeling under the influence of mechanical
loading
Mechanical loading onto bone maintains its morphology,
quantity, and quality. In cases of being bed-ridden or
undergoing spaceflight, the body endures reduced mech-
anical loading, resulting in increased osteoclastic bone
resorption and fragility. It is reported that unloading-
induced osteoclastic bone resorption is mediated by
osteocyte RANKL (Fig. 1b) [21]. On the other hand,
bone remodeling by additional mechanical loading has
been used in orthodontic treatment for a long time.
Orthodontic force applied to teeth induces alveolar bone
remodeling so that the selected teeth move toward the
targeted destination. During such alveolar bone remod-
eling, osteocytes function as the major source of RANKL
[38]. Thus, as described above, both unloading and load-
ing conditions can induce the osteoclastic bone resorp-
tion, which is mediated by the increase of osteocyte
RANKL. The mechanism of precisely how this cytokine
is induced in osteocytes requires further study.

Osteoporosis
Osteoporosis is defined as a disease characterized by low
bone mass and microarchitectural deterioration of bone
tissue caused by an unbalancing of the resorption-
formation toward resorption [39]. This imbalance is
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induced by alterations in hormone expression, nutrition,
mobility, and/or senescence. Diseases and medication
used to treat them can result in osteoporosis as well.
Studies have shown that B cell RANKL, as well as osteo-
cyte RANKL, to some extent contributed to bone loss in
a mouse model of postmenopausal osteoporosis, whereas
that of T cells did not (Fig. 1b) [40, 41]. Recently, it was

reported that soluble RANKL deficiency did not affect
the severity of bone loss in this model, suggesting a role
for membrane-bound RANKL to the pathology of osteo-
porosis [16, 17]. Because inhibition of RANKL can
ameliorate excessive bone resorption by suppressing os-
teoclastogenesis, a human monoclonal IgG2 antibody
against RANKL denosumab has come to be used for the

Fig. 1 RANKL in bone metabolism. a The RANKL–RANK interaction in bone development and remodeling. Hypertrophic chondrocytes and
osteoblasts function as the source of RANKL during growth. After the growth period, osteocytes are the major source of RANKL. RANKL induces
the differentiation of osteoclasts, which resorb bone matrix. b RANKL–RANK interaction in bone and joint diseases related to immobility and
aging. The bone loss induced by unloading is induced by osteocyte RANKL. B cell RANKL is reported to partially contribute to the bone loss in
postmenopausal osteoporosis, as well. c In the lesion that occur in rheumatoid arthritis, synovial fibroblasts stimulated with pro-inflammatory
cytokines, including IL-17, express RANKL and enhance osteoclastogenesis. In periodontitis, RANKL is mainly provided by PDL cells and
osteoblasts. (see also Table 2). The IL-17 in these processes is produced by TH17 cells stimulated by IL-6. TH17 cells (exFoxp3 TH17 cells, in
particular) express RANKL as well. RANKL receptor activator of NF-κB ligand, RANK receptor activator of NF-κB, TH17 cell T helper 17 cell, PDL
periodontal ligament
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treatment of osteoporosis over the last decade in many
countries [42, 43]. Romosozumab, a monoclonal antibody
against sclerostin, has started to be used for osteoporosis
patients very recently [44]. Sclerostin is a well-known in-
hibitor of Wnt signaling, and its neutralization leads to an
increased bone formation. In addition, sclerostin was
shown to induce RANKL expression [45, 46], and romoso-
zumab decrease bone resorption via its inhibition.

Inflammatory bone loss
Rheumatoid arthritis (RA) is a joint disease characterized by
chronic inflammation of the synovium and erosion of cartilage
and bone [47]. In this context, RANKL that mediate osteoclas-
togenesis is produced by the synovial fibroblasts under inflam-
mation, as well as T helper 17 (TH17) cells, especially those
that with a history of Foxp3 expression (exFoxp3 TH17 cells)
(Fig. 1c) [48–50]. Denosumab has been shown to be effective
in inhibiting the progression of joint destruction [51], but its
clinical use is approved in only a limited number of countries.
Because denosumab was effective in the prevention of
bone destruction but not joint inflammation or cartilage

destruction, it is desirable to use this drug in combination
with others, such as methotrexate and biologics [52].
Periodontitis is the most common infectious disease and

the major cause of tooth loss owing to the loss of tooth-
supporting bone, alveolar bone [53]. Bacterial penetration
of the oral epithelium leads to an immune response in the
periodontium, generating exFoxp3 TH17 cells [15]. These
cells produce interleukin (IL)-17 to stimulate osteoblasts
and periodontal ligament (PDL) cells to express RANKL,
as well as other inflammatory cytokines, resulting in
osteoclast generation and subsequent bone destruction
(Fig. 1c). The bone destruction similarly occurs in mice
deficient in soluble RANKL [15]. The loss of alveolar bone
eventually leads to ejection of the teeth and resultant alle-
viation of inflammation [54]. Sources of RANKL in these
contexts are summarized in Table 2.
As described above, the RANKL–RANK system plays a

crucial role in bone resorption, dysregulation, and re-
regulation of which are therefore the key element in both
bone diseases and their treatments. Recently, the vesicular
RANK secreted from osteoclasts was revealed to promote
osteoblastogenesis by activating Runx2 via RANK–RANKL

Table 1 Mutations of RANKL/RANK/OPG genes in hereditary bone diseases

Molecule Gene
symbol

Location Site of mutation Disease Literature

DNA Protein

RANKL TNFSF11 13q14 IVS7+4_8del Osteopetrosis, autosomal recessive 2 23

c.596T>A p.Met199Lys Osteopetrosis, autosomal recessive 2 23

c.828_829delCG p.Val277fs Osteopetrosis, autosomal recessive 2 23

RANK TNFRSF11A 18q21.33 c.40_66dup p.Ala13_Leu21dup Paget disease of bone 2, early–onset 25, 26

c.48_65dup p.Leu16_Leu21dup Familial expansile osteolysis 28, 29, 30

c.49_63dup p.Leu16_Leu20dup Expansile skeletal hyperphosphatasia 31

c.49_66dup p.Leu16_Leu21dup Familial expansile osteolysis 26

c.52_66dup p.Leu16_Leu21dup Paget disease of bone 2, early–onset 27

c.55_66dup p.Cys18_Leu21dup Panostotic expansile bone disease 32

c.157G>C p.Gly53Arg Osteopetrosis, autosomal recessive 7 24

c.385C>T p.Arg129Cys Osteopetrosis, autosomal recessive 7 24

c.508A>G p.Arg170Gly Osteopetrosis, autosomal recessive 7 24

c.523T>C p.Cys175Arg Osteopetrosis, autosomal recessive 7 24

c.730G>T p.Ala244Ser Osteopetrosis, autosomal recessive 7 24

OPG TNFRSF11B 8q24.12 100 kb deletion Paget disease of bone 5, juvenile–onset 33

245 kb deletion Paget disease of bone 5, juvenile–onset 37

c.193T>C p.Cys65Arg Paget disease of bone 5, juvenile–onset 35

c.226A>C p.Thr76Pro Paget disease of bone 5, juvenile–onset 37

c.260G>A p.Cys87Tyr Paget disease of bone 5, juvenile–onset 35

c.349T>C p.Phe117Leu Paget disease of bone 5, juvenile–onset 35

c.592_IVS3+19_20del Paget disease of bone 5, juvenile–onset 35

c.544_546delGAC p.Asp182del Paget disease of bone 5, juvenile–onset 34, 35

c.966_969delTGAC insCTT p.Asp323Ser fsX3 Paget disease of bone 5, juvenile–onset 36

IVS intervening sequence, c. coding DNA, p. protein, del deletion, dup duplication, ins insertion, fs frame shift
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reverse signaling [18]. With this finding, the RANKL–RANK
system attained greater significance for bone biology.

RANKL in immunity
RANKL signaling is crucial for the development of vari-
ous organs, including immune organs. In fact, RANKL
was first reported as an activator of dendritic cells
expressed by T cells [4]. The immune organs consist of
immune cells and stromal cells. Studies using mice have
shown that several of these cell types express RANKL or
RANK, transducing signals for the development and
function of the immune system as described below.

Bone marrow formation
The bone marrow is one of the primary lymphoid organs,
where lymphocytes emerge and mature. Both T and B cells
are born in the bone marrow and the latter cells mature in
this organ. Other types of hematopoietic cells including eryth-
rocytes reside in this space as well. Because the bone marrow
space is preserved by osteoclastic bone resorption within the
bone, RANKL functions as a maintainer of the bone marrow
and its indwelling immune cells. In most types of osteopetro-
sis, the patients exhibit mild to severe hematological defects,
which can lead to anemia, hemorrhage, and severe or recur-
rent infectious diseases [55, 56].

Thymus development
The thymus is another primary lymphoid organ where T
cell progenitors undergo the positive and the negative
selections for acquiring the property to distinguish non-

self from self-antigens, thereby establishing self-
tolerance. During negative selection, cells that strongly
interact with the self-antigens expressed on major histo-
compatibility complex (MHC) molecules undergo apop-
tosis [57]. In this process, these antigens, including a
portion of the tissue-specific antigens (TSAs), are
expressed by medullary thymic epithelial cells (mTECs)
under the control of a crucial factor, autoimmune regu-
lator (Aire) [58, 59]. RANKL is a key cytokine for indu-
cing Aire expression in these epithelial cells, and it is
provided by lymphoid tissue inducer (LTi) cells, single
positive thymocytes, Vγ5+ γδ T cells, and invariant nat-
ural killer T (iNKT) cells (Fig. 2a) [60–63]. Because
thymic development is normal in mice deficient in sol-
uble RANKL, it is suggested that membrane-bound
RANKL in these cells induces mTEC development [17].

Lymph node development
RANKL also contributes to the development and function
of the secondary lymphoid organs, where immune re-
sponses take place. The LN is one such organ distributed
throughout the body. LNs consist of lymphocytes and
their surrounding stromal cells, establishing a complex
but well-organized structure, with B and T cells localized
in distinct regions [64]. LN organogenesis begins with the
condensation of LTi cells, which are CD45+CD4+CD3−IL-
7R+RORγt+, and specific mesenchymal cells named
lymphoid tissue organizer (LTo) cells. RANKL is
expressed on LTi cells, LTo cells, and the descendants of
the latter, marginal reticular cells (MRCs) [65, 66]. The

Table 2 Table caption

Context Model Source Contribution Reference

Disuse atrophy Tail suspension (mouse) Osteocyte (Dmp1–expressing) + 21

Orthodontic tooth
movement

Orthodontic tooth movement (mouse) Osteocyte (Dmp1–expressing) + 38

Osteoporosis Ovariectomy (mouse) B cell (Cd19–expressing) Partial 40

Osteoporosis Ovariectomy (mouse) T cell (Lck–expressing) – 40

Osteoporosis Ovariectomy (mouse) Osteocyte (Dmp1–expressing) + 41

Rheumatoid arthritis Collagen antibody-induced arthritis
(mouse)

Synovial fibroblast (Col6a1–
expressing)

+ 48

Rheumatoid arthritis Collagen antibody-induced arthritis
(mouse)

T cell (Lck–expressing) – 48

Rheumatoid arthritis Collagen antibody-induced arthritis
(mouse)

Articular chondrocyte (Col2a1–
expressing)

– 48

Rheumatoid arthritis Collagen-induced arthritis (mouse) Synovial fibroblast (Col6a1–
expressing)

+ 48

Rheumatoid arthritis Collagen-induced arthritis (mouse) T cell (Lck–expressing) – 48

Periodontitis Ligature–induced periodontitis (mouse) B cell (Mb1–expressing) – 15

Periodontitis Ligature–induced periodontitis (mouse) T cell (Cd4–expressing) Partial 15

Periodontitis Ligature–induced periodontitis (mouse) Periodontal ligament
cell

(Scx–expressing) + 15

Periodontitis Ligature–induced periodontitis (mouse) Osteoblast–lineage cell (Sp7–expressing) + 15
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expression of RANKL on the stromal cells in the LNs is
reported to be enhanced by lymphotoxin β receptor
(LTβR) signaling [67]. The RANKL signal, more likely via

the membrane-bound type [17], induces the maturation of
the LNs by increasing cellularity and the attraction of im-
mune cells to the LNs [6, 65]. It was recently reported that

Fig. 2 RANKL in immunity. a RANKL–RANK interaction in the development of the thymus. RANKL is produced by LTi cells, T cells, and iNKT cells
and interacts with the RANK expressed on mTECs. This interaction induces the expression of Aire, resulting in the expression of TSAs on MHC
molecules. The TSA–MHC complex is necessary for negative selection, the key process for establishing self-tolerance. b RANKL–RANK interaction
in the lymph node development. Lymph node development begins with the interaction between LTi cells and LTo cells. LTα1β2 is expressed by
LTi cells and interacts with LTβR on LTo cells, which in turn leads to the expression of RANKL on LTo cells. The expressed RANKL stimulates LTi
cells to induce more LTα1β2, forming a positive feedback loop. With the stimulation of LTα1β2, some LTo cells mature into MRCs. The RANKL on
LTo cells and MRCs binds to the RANK on lymphatic endothelial cells, resulting in the recruitment of macrophages. c RANKL–RANK interaction in
the gastrointestinal tract. (Left) ILC3s interact with each other through RANKL and RANK. The interaction leads to the decrease of the proliferation
and IL-17/IL-22 production of these cells, resulting in the suppression of excessive inflammation. (Right) RANKL–RANK interaction in M cell
development. Mesenchymal cells beneath the epithelium of the gastrointestinal tract express RANKL and interact with RANK–expressing epithelial
cells. These cells differentiate into morphologically and functionally unique cells called M cells. These cells enable the transfer of antigens from
the lumen of gastrointestinal tract to DCs, leading to IgA production. d RANKL–RANK interaction in the skin. Keratinocytes express RANKL upon
UV–irradiation. The RANKL binds to LCs in the skin. These LCs contribute to the generation of Treg cells, which decrease the skin inflammation
and resolution of dermatitis in psoriasis and atopic dermatitis. e RANKL–RANK interaction in the CNS inflammation. (Left) TH17 cell cells induce
the CCL20 expression of astrocytes at the blood–brain barrier via RANKL–RANK signaling. CCL20 recruits CCR6-expressing cells, including TH17 cell
cells. These accumulated cells penetrate the barrier and infiltrate into the CNS to elicit inflammation. (Right) In the context of ischemic stroke,
dead cells in the brain release DAMPs, which are recognized by TLRs. TLR stimulation of microglial cells leads to the production of pro-
inflammatory cytokines including IL-6 and TNF-α, leading to inflammation and further cell death. RANKL–RANK signal in the microglial cells
inhibits the production of these cytokines, resulting in the protection of the brain. RANKL receptor activator of NF-κB ligand, RANK receptor
activator of NF-κB, LTi cell lymphoid tissue inducer cell, iNKT cell invariant natural killer T cell, mTEC medullary thymic epithelial cell, Aire
autoimmune regulator, TSA tissue-specific antigen, MHC major histocompatibility complex, LTo cell lymphoid tissue organizer cell, LT lymphotoxin,
LTβR lymphotoxin β receptor, MRC marginal reticular cell, ILC3 group 3 innate lymphoid cell, IL interleukin, DC dendritic cell, UV ultra violet, LC
Langerhans cell, Treg cell regulatory T cell, CNS central nervous system, TH17 cell T helper 17 cell, CCL20 C-C motif chemokine ligand 20, CCR6 C-C
motif chemokine receptor 6, DAMP damage-associated molecular pattern, TLR Toll-like receptor
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the RANKL expressed by LTo lineage cells stimulate
lymphatic endothelial cells to recruit and maintain macro-
phages in the LNs (Fig. 2b) [68].

Intestinal immunity
The gastrointestinal (GI) tract is the largest pathogenic
bacteria entry site, with a surface area 100 times that of
the body surface. In order to protect the body from
these bacteria, the GI tract has developed a highly spe-
cialized defense system. Lymphocytes lacking antigen re-
ceptors, innate lymphoid cells (ILCs), are known to be
abundant in the mucosal tissues and constitute a part of
barrier functions by secreting cytokines [69, 70]. Group
3 ILCs, including LTi cells and ILC3s, express a tran-
scription factor RORγt and produce high amount of cy-
tokines IL-17 and IL-22, contributing to the homeostasis
in the intestine [71, 72]. A recent study reported that
ILC3s are divided into NKp46−CCR6−, NKp46+CCR6−,
and NKp46−CCR6+ cells. The expression of both
RANKL and RANK showed the highest in the CCR6+

cells, which cluster within the cryptopathces [73, 74].
The proliferation and IL-17A/IL-22 expression of the
CCR6+ ILC3s were suppressed by RANKL [73], indicat-
ing that these cells interact with each other in the cryp-
topatches to suppress excessive proliferation and
inflammation (Fig. 2c).
Peyer’s patches (PPs) are lymphoid follicles beneath the

intestinal epithelium. Within the epithelium covering the
PPs (follicle-associated epithelium, FAE), there is a unique
cell subset, M cells. Unlike their surrounding epithelial
cells, M cells lack villi, but have a micro-fold structure on
the apical side and a sac-like structure (the M-cell pocket)
on the basal side. These cells have a high capacity for trans-
cytosis, thus transferring the bacteria in the lumen to the
DCs in the M-cell pocket. Antigen presentation to DCs via
M cells results in the immune response to the transcytosed
bacteria, i.e., IgA production [75]. RANKL is necessary and
sufficient for M cell development, and its source during
the process has been shown to be the mesenchymal cells
in the lamina propria (Fig. 2c). The deficiency in soluble
RANKL has not affected the development of these cells
[76]. The RANKL in these mesenchymal cells also plays a
role in IgA production [14].

Skin inflammation
The skin is the front line of the defense against external
stimuli, and is thus equipped with a specific immune sys-
tem. Langerhans cells (LCs) reside in the epidermis and
are one of the key components of skin immunity [77, 78].
LCs are classified as a DC subset, with neuron-like den-
drites, a high capacity for antigen presentation, and a cap-
acity to migrate into the LNs, where LCs present antigens
to T cells, thereby generating inflammatory or regulatory
T (Treg) cells. RANKL has been shown to be expressed by

keratinocytes upon ultra violet (UV) irradiation via the
prostaglandin E receptor (EP) 4 signal [79]. The RANKL
expressed by the keratinocytes interacts with RANK on
LCs, resulting in the expansion of Treg cells. The in-
creased Treg cells exert immunosuppressive effects [80],
decreasing excessive inflammation in the skin (Fig. 2d).
The immunosuppression induced by UV is the basis of
the phototherapy used for psoriasis and atopic dermatitis,
but is also can lead to carcinogenesis [81].

Inflammation in the central nervous system
The central nervous system is an immune-privileged site,
which is due to the presence of the blood–brain barrier
(BBB) comprised of endothelial cells, pericytes, and as-
trocytes. This barrier restricts the entry of cells and mi-
croorganisms [82]. A study showed that penetration of
the BBB by pathogenic TH17 cells in a multiple sclerosis
mouse model depended on RANKL signaling; TH17 cells
expressing RANKL interact with RANK-expressing as-
trocytes, which in turn secrete C-C motif chemokine lig-
and 20 (CCL20), further attracting C-C motif chemokine
receptor 6 (CCR6)-expressing cells into the central ner-
vous system (CNS) (Fig. 2e) [83].
In the brain tissue with ischemic stroke, there is an in-

flammation elicited by immune cells including microglial
cells, macrophages, DCs, and γδ T cells [84, 85]. Re-
duced blood flow in the brain leads to the brain cell
death, which results in the release of damage-associated
molecular patterns (DAMPs) form the dead cells. These
DAMPs include high mobility group box-1 (HMGB1)
and peroxiredoxin (Prx), which lead to the BBB break
and the stimulation of the immune cells above [86].
Clinical studies have observed that serum OPG concen-
tration is higher in patients with ischemic stroke and is
positively correlated with the severity [87]. A study
showed that RANKL suppresses the production of pro-
inflammatory cytokine, such as IL-6 and TNF-α, induced
via Toll-like receptor 4 (TLR-4) (Fig. 2e) [84].
The course of these studies has revealed that the

RANKL signal functions in various immune settings such
as organogenesis, immune cell development, as well as the
regulation of their function. Because RANKL serves some-
times beneficial but other times harmful, the modulation
of this cytokine may be therapeutic utility in diseases af-
fecting the immune system. Careful studies are needed to
avoid the potential occurrence of side effects.

RANKL involvement in other biological processes
It has become clear that the RANKL/RANK system not
only plays an important role in bone metabolism and
the immune system, but it also has various physiological
functions in multiple other organs.
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Mammary gland development and function
The mammary gland undergoes morphological changes
in pregnancy to allow lactation. During pregnancy, there
is extensive lateral branching and epithelial bud develop-
ment of epithelial buds, which are organized into
secretory lobular structures in preparation for lactation.
From an analysis of RANKL- or RANK-deficient mice, it
was revealed that the RANKL/RANK system is also im-
portant for the formation of the lactating mammary
gland [88]. Although the mammary gland develops nor-
mally in RANKL-deficient mice, the formation of lobu-
loalveoli, which are capable of milk secretion during
pregnancy, was blocked due to a suppression of the pro-
liferation of the mammary epithelium. Mechanistically,
RANKL promotes the proliferation of mammary epithe-
lial cells through the expression cyclin D1 by activating
NF-κB [89]. In addition, progesterone, which is an essen-
tial sex hormone for the proliferation of adult mammary
epithelial cells and the formation of milk-secreting acini,
directly regulates RANKL expression in mammary epi-
thelial cells through the progesterone receptor, and the
RANKL secreted from these cells binds to RANK in
both an autocrine and paracrine manner [90]. The
RANKL/RANK system has also been shown to con-
trol mammary stem cell (MaSC) replication. Al-
though the progesterone receptor is not expressed in
MaSCs, progesterone acts on its receptor expressed
in luminal epithelial cells to induce RANKL expres-
sion, which increases the pool of MaSCs by acting
on RANK-expressing basal epithelial cells in a para-
crine manner (Fig. 3a) [90].

Fever and the regulation of body temperature
Both RANKL and RANK are expressed in the central
nervous system, but their function was for a long
time unknown. RANK is specifically expressed in neu-
rons and astrocytes in the preoptic area (POA)/medial
septal nucleus (MSn), whereas RANKL is expressed in
the lateral septal nucleus (LSn) [91]. These sites were
known to be involved in central control of fever and
body temperature. Indeed, stereotactic intracerebro-
ventricular injections of recombinant RANKL into the
lateral ventricle of mice led to a febrile reaction.
Since this effect was canceled by either treatment
with indomethacin, a non-selective cyclooxygenase
(COX)-1/2 inhibitor, or a genetic deletion of EP3, a
receptor for prostaglandin E2 (PGE2), the thermo-
regulatory mechanism of the RANKL/RANK axis in
the brain is mediated by central prostaglandin synthe-
sis. Moreover, RANK deficiency abolished the LPS-
induced fever, suggesting that the central RANKL/
RANK signaling also mediates the inflammatory fever
response (Fig. 3b). It was also shown that the
RANKL/RANK-mediated control of thermoregulation

is involved not only in the fever that occurs during
infection but also in the hormonal control of basal
body temperature in females.

Vascular calcification
There is growing evidence that the RANKL/RANK/
OPG system is related to vascular calcification. The ex-
pression of RANKL/RANK/OPG is upregulated in cal-
cified arteries and that RANKL promotes pathological
differentiation of vascular smooth muscle cells
(VSMCs) into cells with osteoblastic phenotype, at least
in part, through the expression of bone morphogenetic
protein (BMP) 4 [92]. The administration of OPG de-
creased calcification and the expression of osteogenic
genes in aortic valves in a mouse model of atheroscler-
osis. Moreover, the effects of RANKL on vascular cells
are suppressed by estrogen signaling. In ovariectomized
ApoE-deficient mice, estrogen treatment inhibited vas-
cular calcification as a result of the inhibition of BMP/
Smad signaling [93]. It was also reported that RANKL
expression and calcification in VSMCs were increased
by angiotensin II. Since vascular calcification was sup-
pressed by the administration of an angiotensin II re-
ceptor antagonist, the local renin-angiotensin system
contributes to vascular calcification through the expres-
sion of RANKL. Conversely, stimulation of VSMCs
with RANKL increased the expression of angiotensin II
receptor and angiotensin-converting enzyme [94].
These results suggest that the RANKL/RANK/OPG sys-
tem may contribute to the formation of vascular calcifi-
cation at the site of atherosclerosis (Fig. 3c)

Hair growth
The RANKL/RANK system also plays an important role
in hair follicle development in mice [95]. Although
RANKL and RANK are expressed in the interfollicular
epidermis (IFE) and hair follicles (HFs) of the epi-
dermo–pilosebaceous unit during development,
RANKL/RANK signaling is in fact dispensable for HF
morphogenesis. On the other hand, the HFs in RANK-
or RANKL-deficient mice are unable to initiate the ana-
gen (growth) phase of the hair regeneration cycle. Trans-
genic expression of RANK in the HFs or subcutaneous
injection of recombinant RANKL activates the hair cycle
and epidermal growth. RANKL is highly expressed in
HFs at the initiation of the anagen phase and drives the
HF stem cells into proliferation (Fig. 3d).

Glucose metabolism
It has been shown that the RANKL/RANK system is also
related to the pathogenesis of type 2 diabetes mellitus
(T2DM). The serum level of soluble RANKL was shown to
be a significant risk predictor of T2DM in a large prospect-
ive study [96]. Blockage of RANKL or RANK either

Ono et al. Inflammation and Regeneration            (2020) 40:2 Page 8 of 16



Fig. 3 (See legend on next page.)

Ono et al. Inflammation and Regeneration            (2020) 40:2 Page 9 of 16



systemically or specifically in the liver of T2DM mouse
models leads to a significant improvement of hepatic insu-
lin sensitivity, plasma glucose concentrations, and glucose
tolerance. RANKL/RANK signaling activates NF-κB in he-
patocytes, leading to inflammatory cytokine production,
Kupffer cell activation, and excess storage of fat (Fig. 3e).

Muscle strength
RANK is also known to be expressed in skeletal muscle.
The activation of RANKL/RANK signaling in skeletal
muscle leads to the inhibition of myogenic differenti-
ation through the activation of NF-κB, which results in
skeletal muscle dysfunction and loss [97]. In fact, admin-
istration of the recombinant OPG protein improved
muscle strength in a mouse model of Duchenne’s mus-
cular dystrophy and denervation-induced muscle atro-
phy. More recently, the effect of RANKL/RANK
inhibition on muscle mass and strength was also re-
ported, particularly in conditions of osteoporosis or sar-
copenia [98]. Mice carrying the human RANKL genomic
region (huRANKL–Tg mice) displayed decreased muscle
mass, force, fat infiltration, and glucose uptake, along
with low bone mass phenotype and upregulation of anti-
myogenic and inflammatory genes. The administration
of the recombinant OPG protein or denosumab restored
muscle mass, function, and glucose utilization in huR-
ANKL–Tg mice as well as peroxisome proliferator-
activated receptor β (PPARβ)-deficient mice, which de-
velop a combination of sarcopenia and a low bone mass
phenotype. It was also shown that denosumab treatment
for more than 3 years improved the appendicular lean
mass and handgrip strength of osteoporotic women.
Thus, RANKL/RANK signaling decreases muscle
strength, while denosumab treatment may preserve both
bone and skeletal muscle function (Fig. 3f).

RANKL in tumorigenesis and metastasis
It has become clear that the RANKL/RANK signaling is
involved in a wide range of functions in the body. Fur-
thermore, numerous studies have demonstrated RANKL
and RANK expression in neoplastic tissues. Interestingly,
the expression level of RANKL/RANK in cancer tissues
is related to the prognosis of numerous cancer types, in-
cluding breast, lung, endometrial, renal cell, and gastric
cancer [99]. Therefore, the RANKL/RANK axis may in-
fluence the development and progression of cancer,
while the specific effects of RANKL/RANK may differ
between cancer types.

Breast cancer
Breast cancer is the most common cancer in women.
There is evidence that hormone replacement therapy is
associated with an increased risk of breast cancer. Pre-
clinical evidence suggests that RANKL/RANK signaling
is involved in the oncogenic role of progesterone in the
mammary gland [100, 101]. The drugs used as hormone
replacement therapy or contraceptives induces RANKL
expression in mammary epithelial cells, thereby increas-
ing the proliferation of these cells and MaSCs. RANK
overexpression under the control of the mouse mam-
mary tumor virus (MMTV) promoter increased tumori-
genesis of breast tissue induced by carcinogens or
progesterone [100]. Consistent with this, RANKL inhib-
ition by RANK–Fc led to a selective reduction in the
proliferation of mammary epithelial cells and preneo-
plastic hyperplasia [100]. In mice with breast tissue-
specific deletion of RANK, the tumorigenesis, tumor
growth, and stem cell expansion driven by progestin were
attenuated [101]. Furthermore, the RANKL/RANK signal-
ing in mammary progenitor cells is critical for the initi-
ation and progression of breast cancer susceptibility gene

(See figure on previous page.)
Fig. 3 RANKL in biological processes other than bone metabolism and the immune systems. a RANKL–RANK interaction in the development of
the mammary gland. The LECs of the mammary gland are divided into two subpopulations based on the expression of PR. PR-expressing LECs
express RANKL in response to Pg. RANKL interacts with LECs and MECs, resulting in the proliferation of these epithelial cells and the
morphogenesis of the gland. b RANKL–RANK interaction in thermogenesis. Certain types of cells of the LSn of the forebrain express RANKL,
which interacts with neurons and astrocytes in the POA and the MSn. These nuclei produce PGE2 via COX-2, which leads to both shivering and
non-shivering thermogenesis. c RANKL–RANK signaling in the blood vessel. Both RANKL and RANK are expressed on vascular cells including
VSMCs. RANKL induces the expression of BMP2 and 4, which promotes the osteogenic gene expression of these cells, resulting in the vascular
calcification. The signal is suppressed by estrogen and its receptor ERα. Expression of RANKL and RANK in this context is enhanced by Ang II.
Production of Ang II is increased in turn by RANKL and RANK. d RANKL–RANK interaction in the hair cycle. Cells in the inner root sheath of the
HF express RANKL. Cells in the outer root sheath, the bulge and the IFE express RANK. The interaction of these cells induces the growth of the
epidermis and activates the hair cycle. e RANKL–RANK interaction in the liver. Hepatocytes stimulated with RANKL express pro-inflammatory
cytokines that stimulate Kupffer cells, leading to T2DM. f RANKL–RANK interaction in the skeletal muscle. RANKL–RANK signaling in muscle fibers
is involved in the strength and glucose metabolism of the skeletal muscle. RANKL receptor activator of NF-κB ligand, RANK receptor activator of
NF-κB, Pg progesterone, PR progesterone receptor, LEC luminal epithelial cell, MEC myoepithelial cell, LSn lateral septal nucleus, POA preoptic area,
MSn medial septal nucleus, PGE2 prostaglandin E2, COX-2 cyclooxygenase-2, VSMC vascular smooth muscle cell, BMP bone morphogenetic
protein, ER estrogen receptor, Ang angiotensin, ATR angiotensin receptor, HF hair follicle, IFE interfollicular epidermis, T2DM type 2
diabetes mellitus
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1 (BRCA1) mutation-driven mammary cancer (Fig. 4a)
[102, 103]. Targeting the RANKL/RANKL axis may be a
rational prevention strategy for patients with BRCA1
mutation-positive breast cancer.

Lung cancer
The RANKL/RANK signaling is also involved in lung
cancer [104]. RANK and RANKL expression is fre-
quently found in cells derived from lung cancer patients
and have been associated with poor prognosis. Activa-
tion of the RANKL/RANK pathway regulates lung can-
cer stem-like cell expansion via a mechanism dependent
on mitochondrial respiration (Fig. 4b). RANKL inhib-
ition suppressed tumor progression in a mouse model of
lung adenocarcinoma. Therefore, denosumab may also
be a therapeutic candidate for primary lung cancer in
humans. In addition, the effect of female sex hormones
on RANKL/RANK expression might explain how sex
hormones are involved in lung cancer development.

Multiple myeloma
Multiple myeloma is a malignant proliferative disease
of plasma cells in the bone marrow and remains
largely untreatable. Patients with multiple myeloma
develop osteolytic lesions, which frequently lead to
skeletal-related events, including hypercalcemia,
spinal cord compression, and pathological fractures
[105]. Therefore, preventing the progression of bone
lesions is an important clinical issue in the treatment
of myeloma. Myeloma-induced bone destruction is
based on increased bone resorption and decreased
bone formation, which are induced by the inter-
action between myeloma cells and the bone marrow
microenvironment. Myeloma cells induce RANKL
expression in stromal cells and suppress OPG ex-
pression. In a murine model of multiple myeloma,
RANKL has been shown to induce myeloma cell re-
lease from dormancy through osteoclastic bone

resorption, thereby promoting disease progression
and/or relapse (Fig. 4c) [106]. Administration of
RANK–Fc decreased tumor burden and the produc-
tion of multiple myeloma-promoting cytokines such
as IL-6. In line with these observations, bone resorp-
tion is related to tumor burden, and denosumab has
been shown to prevent skeletal-related events in pa-
tients with multiple myeloma.

Bone metastasis
Bone contains abundant growth factors, especially
insulin-like growth factor (IGF) and transforming
growth factor-β (TGF-β), which are continuously re-
leased into the bone marrow, together with the calcium
that emerges through the bone resorption carried out by
osteoclasts [2]. Under physiological conditions, these
growth factors and calcium are utilized by osteoblasts to
form new bone. On the other hand, when cancer cells
metastasize to the bone marrow, these factors promote
the growth and survival of cancer cells. Thus, bone pro-
vides a fertile environment for cancer cells.
Cancer cells that have metastasized to the bone mar-

row produce parathyroid hormone-related peptide
(PTHrP) and other cytokines that stimulate RANKL ex-
pression and inhibit OPG expression in osteoblasts as
well as stromal cells [107]. The increase in the RANKL/
OPG ratio in the bone microenvironment leads to en-
hanced bone resorption and increased release of growth
factors and calcium. These factors stimulate the further
growth of cancer cells and the release of cancer cell-
derived factors, thus increasing the RANKL/OPG ratio
even more, thereby promoting continuous activation of
bone destruction. This cascade of events is known as a
“vicious cycle” that occurs between the growth of cancer
cells and the destruction of bone (Fig. 4d) [107, 108].
The RANKL/RANK/OPG system is known to be involved
in the development and metastasis of breast cancer, lung
cancer, prostate cancer, melanoma, and renal cell carcin-
oma [99, 107]. In addition, the relative expression levels of

(See figure on previous page.)
Fig. 4 RANKL in tumorigenesis and metastasis. a RANKL–RANK interaction in breast cancer. Mutations in BRCA1 lead to the increased expression
of RANK in luminal progenitor cells of the mammary gland. The RANKL expressed on PR-expressing LECs (see Fig. 3a) stimulates the proliferation
and survival of the mutant cells and DNA repair is impaired in these cells, resulting in the tumorigenesis. b RANKL–RANK interaction in lung
cancer. KRAS mutations in the lung epithelial cells increase RANK expression on these cells. These cells undergo excessive proliferation upon
RANKL stimulation, leading to tumor development. c RANKL–RANK interaction in multiple myeloma. Myeloma cells enhance RANKL expression on
the stromal cells of tumors in the bone, resulting in osteoclastic bone resorption and the release of myeloma cells from dormancy. Together,
these processes lead to an expansion of the tumors in the bone. d RANKL–RANK interaction in bone metastasis. Cancer cells metastasized to the
bone marrow produce molecules, including PTHrP. Some of these induce RANKL expression on the tumor stromal cells. This RANKL induces
osteoclastic bone resorption, and the degraded bone releases growth factors embedded in the matrix, such as IGF-1 and TGF-β. These factors
increase the tumor size and the enlarged tumor further contributes to the amount of RANKL expression, forming a vicious cycle. The soluble
form of RANKL contributes to the chemotaxis of the tumor cells expressing RANK toward the site of metastasis. Tumoral RANKL is also involved in
the angiogenesis and the permeability of the blood vessels, facilitating tumor invasion. RANKL receptor activator of NF-κB ligand, RANK receptor
activator of NF-κB, Pg progesterone, PR progesterone receptor, LEC luminal epithelial cell, PTHrP parathyroid hormone-related peptide, IGF insulin-
like growth factor, TGF-β transforming growth factor-β
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RANKL, RANK, and OPG may have an influence on the
prognosis of several cancer types, such as breast, lung,
endometrial, renal cell, and gastric cancers, along with
osteosarcoma and multiple myeloma [99]. Various studies
have demonstrated a positive correlation between the level
of RANK expression and the osteotropism of breast can-
cer and renal cell carcinoma. RANKL inhibition was
shown to suppress the tumor burden in the bone in a
mouse model of bone metastasis.
RANKL also regulates bone metastasis through the

stimulation of the migration of cancer cells to bone
[109]. A recent study showed that soluble RANKL is re-
sponsible for bone metastasis by promoting the migra-
tion of RANK-expressing tumor cells to bone without
affecting bone resorption (Fig. 4d) [17]. RANKL/RANK
signaling is also involved in both the induction of
angiogenesis and increased vascular permeability via
RANK-expressing endothelial cells, and may affect ex-
travasation and metastasis (Fig. 4d) [110]. Indeed, the
high level of serum RANKL is associated with an in-
creased risk of developing bone metastasis in the pa-
tient with breast cancer [111].
Based on these findings, the RANKL/RANK axis

plays a central role in various steps of bone metasta-
sis. Therefore, inhibition of the RANKL/RANK path-
way can break the vicious cycle and suppress bone
metastasis [112]. Recently, it was reported that oral admin-
istration of AS2676293, a small-molecule inhibitor of
RANKL, reduced bone metastasis of breast cancer cells and
malignant melanoma by inhibiting not only bone resorption
but also RANKL-induced tumor migration in a murine
model [113].

Conclusions
More than 20 years have passed since the discovery of
RANKL, which was a major breakthrough in bone biology.
RANKL was first identified in the immune system, and the
sharing of this cytokine between bone metabolism and the
immune system forms the basis for osteoimmunology. The
studies that followed have revealed that RANKL plays a
wide variety of roles in a variety of organs, sometimes bene-
ficial and sometimes harmful. The findings that have accu-
mulated as a result of these studies have established the
richness of RANKL biology. More recently, the RANK–
RANKL reverse signal was reported, which suggests that
further development of the field of RANKL biology lies
ahead. RANKL has been shown to be a good target for the
treatment of osteoporosis, RA, and tumor. Additional stud-
ies may lead to the development of novel therapeutic strat-
egies for yet other diseases.
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