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Facilitation of colonic T cell immune
responses is associated with an
exacerbation of dextran sodium sulfate–
induced colitis in mice lacking microsomal
prostaglandin E synthase-1
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Takafumi Ichikawa2,3

Abstract

Background: Microsomal prostaglandin E synthase-1 (mPGES-1) is a key enzyme that acts downstream of
cyclooxygenase and plays a major role in inflammation by converting prostaglandin (PG) H2 to PGE2. The present
study investigated the effect of genetic deletion of mPGES-1 on the development of immunologic responses to
experimental colitis induced by dextran sodium sulfate (DSS), a well-established model of inflammatory bowel
disease (IBD).

Methods: Colitis was induced in mice lacking mPGES-1 (mPGES-1−/− mice) and wild-type (WT) mice by
administering DSS for 7 days. Colitis was assessed by body weight loss, diarrhea, fecal bleeding, and histological
features. The colonic expression of mPGES-1 was determined by real-time PCR, western blotting, and
immunohistochemistry. The impact of mPGES-1 deficiency on T cell immunity was determined by flow cytometry
and T cell depletion in vivo.
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Results: After administration of DSS, mPGES-1−/− mice exhibited more severe weight loss, diarrhea, and fecal
bleeding than WT mice. Histological analysis further showed significant exacerbation of colonic inflammation in
mPGES-1−/− mice. In WT mice, the colonic expression of mPGES-1 was highly induced on both mRNA and protein
levels and colonic PGE2 increased significantly after DSS administration. Additionally, mPGES-1 protein was localized
in the colonic mucosal epithelium and infiltrated inflammatory cells in underlying connective tissues and the
lamina propria. The abnormalities consistent with colitis in mPGES-1−/− mice were associated with higher
expression of colonic T-helper (Th)17 and Th1 cytokines, including interleukin 17A and interferon-γ. Furthermore,
lack of mPGES-1 increased the numbers of Th17 and Th1 cells in the lamina propria mononuclear cells within the
colon, even though the number of suppressive regulatory T cells also increased. CD4+ T cell depletion effectively
reduced symptoms of colitis as well as colonic expression of Th17 and Th1 cytokines in mPGES-1−/− mice,
suggesting the requirement of CD4+ T cells in the exacerbation of DSS-induced colitis under mPGES-1 deficiency.

Conclusions: These results demonstrate that mPGES-1 is the main enzyme responsible for colonic PGE2 production
and deficiency of mPGES-1 facilitates the development of colitis by affecting the development of colonic T cell–
mediated immunity. mPGES-1 might therefore impact both the intestinal inflammation and T cell–mediated
immunity associated with IBD.

Keywords: Inflammatory bowel disease, Colitis, Immunity, Th17 and Th1 response, Cytokine, Cyclooxygenase,
Prostaglandin E synthase, Prostaglandin E2

Introduction
Inflammatory bowel disease (IBD), which includes ul-
cerative colitis and Crohn’s disease, is a chronic inflam-
matory disease that is accompanied by abnormalities in
the immune system. Although the etiology and patho-
genesis of IBD remain largely unknown, multiple risk
factors, such as environmental triggers, genetic suscepti-
bility, and alteration of gut microbial flora, have been
implicated in its initiation or progression [1, 2]. T cells,
which in the presence of various cytokines differentiate
into different types of T-helper (Th) cells, including
Th1, Th2, Th17, and regulatory T cells (Tregs), are
widely accepted to play a major role in the pathogenesis
of IBD [3]. An altered Th cytokine network, along with
excessive abnormal immune responses, is closely linked
to the development of IBD. Biological therapies have
been developed with monoclonal antibodies that target
Th1 and Th17 cytokines produced by effector T cells,
and some of these therapies have proven to be clinically
useful for treating patients with IBD and several auto-
immune diseases [4].
Prostaglandin (PG) E2 is a lipid mediator of many

physiological and pathological functions whose produc-
tion is regulated by the sequential enzymatic pathway in-
volving cyclooxygenase (COX) and PGE synthase
(PGES) [5, 6]. On the basis of early studies, COX activ-
ity—consisting of constitutive COX-1 and inducible
COX-2—had been considered the key step in PGE2 syn-
thesis, but subsequent studies discovered that at least
three distinct PGES isozymes, cytosolic PGES (cPGES),
and microsomal PGES-1 (mPGES-1) and mPGES-2, are
responsible for the final step of PGE2 synthesis

downstream from COX [7–10]. PGE2 is known to be a
major mediator in gastrointestinal homeostasis and also
to be highly produced in the inflamed mucosa of pa-
tients with IBD [11]. It is well known to act through 4
kinds of receptor subtypes, EP1, EP2, EP3, and EP4, which
mediate different signaling [12]. Among the EP receptor
subtypes, EP4 plays a pivotal role in regulating patho-
logical events in IBD, as well as in maintaining gastro-
intestinal homeostasis [13–15]. An evaluation of biopsies
from patients with IBD showed that both COX-2 expres-
sion and PGE2 production increase during active phases
of the disease [16]. Accordingly, several studies and case
reports have implicated nonsteroidal anti-inflammatory
drugs (NSAIDs), which inhibit COX activity, in the onset
or exacerbation of IBD [17].
One type of PGES, mPGES-1, is an inducible enzyme

that acts downstream of COX and specifically catalyzes
the conversion of PGH2 to PGE2 [7, 8]. Several studies
in mice lacking mPGES-1 (mPGES-1−/− mice) have pro-
vided novel findings on the role of mPGES-1 as a key
mediator of many physiological and pathophysiological
events in a number of different disease states associated
with inflammation and immune response [18–24]. We
have previously reported that resistance to bovine type II
collagen-induced arthritis in mPGES-1−/− mice is associ-
ated with a failure to develop type II collagen-specific
antibodies, suggesting an important role of mPGES-1
and its driven PGE2 in the development of acquired
immune response [25]. We also reported that mPGES-
1–driven PGE2 facilitates T cell–dependent, antigen-
specific humoral responses [26] and also promotes
expansion of antigen-specific Th17 and Th1 responses
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in an autocrine and paracrine fashion [27]. These previ-
ous findings strongly suggested the pivotal roles of
mPGES-1 in pathogenic T cell immunity.
mPGES-1 protein is overexpressed in inflamed intes-

tinal mucosa of patients with IBD including ulcerative
colitis and Crohn’s disease, and mPGES-1 transcription
is induced in vitro in human colonocytes in response to
stimulation with TNFα, a major cytokine implicated in
intestinal inflammation in IBD [28], suggesting the im-
portance of mPGES-1 in the pathogenesis of IBD. How-
ever, the role of overexpressed mPGES-1 in IBD is still
largely unknown.
A dextran sodium sulfate (DSS)–induced colitis model,

which is highly dependent on both humoral and cellular
immunity, is widely used as a well-established model of
IBD [29]. Previous studies have shown that mPGES-1−/−

mice are highly susceptible to DSS-induced colitis [30,
31], but the detailed intrinsic mechanisms underlying
their susceptibility have not been fully elucidated. The
present study demonstrates that mPGES-1 is the main
enzyme responsible for colonic PGE2 production and ex-
erts anti-colitis activities associated with the suppression
of Th17 and Th1 immunologic responses in DSS-
induced colitis. Conversely, we also indicate the possible
potential for mPGES-1 as a pathogenic factor of colitis
by regulating Tregs. Furthermore, our study using T cell
depletion suggests the anti-colitis effect of mPGES-1 re-
lated to the T cells. Our findings suggest that mPGES-
1–driven PGE2 has a significant impact on not only the
intestinal inflammation but also the pathogenic T cell
immunity associated with IBD.

Materials and methods
Mice
mPGES-1−/− mice with a C57BL/6 background, origin-
ally generated by Prof. Shizuo Akira [22], were pur-
chased from the Oriental Bioservice Inc. (Kyoto, Japan).
mPGES-1 heterogeneous mice were mated to generate
mPGES-1−/− mice and littermate wild-type (WT) mice.
Genotypes were identified by polymerase chain reaction
(PCR) analysis of a tail biopsy DNA extract by using spe-
cific primers for the mPGES-1−/− allele and WT allele.
Mice were housed in cages in a specific pathogen-free
barrier facility and were cared for and handled in ac-
cordance with the guidelines of the Animal Research
and Ethics Committee of Kitasato University and the
Safety Committee for Recombinant DNA Experiments
of Kitasato University. All animal experiments were ap-
proved by the Animal Research and Ethics Committee
of Kitasato University (Approval number Ei-ken 19-12),
and all experiments in mPGES-1−/− mice were approved
by the Safety Committee for Recombinant DNA Experi-
ments of Kitasato University (Approval number 3593).

Induction of colitis
This study used female mice aged 8 to 12 weeks old. To
induce development of colitis, high–molecular-weight,
colitis-grade DSS with an average molecular weight of
36,000 to 50,000 (MP Biomedicals, Santa Ana, CA, USA)
was added to the drinking water for 7 days at a concen-
tration of either 1 or 2% [32]. Control mice were re-
ceived plain drinking water without DSS. The severity of
colitis was assessed daily by scoring body weight loss,
stool consistency, and occult blood in the stool on a
scale ranging from 0 (normal) to 4 (severe) and calculat-
ing the total disease activity index (DAI) score as the
sum of these 3 scores (maximum score: 12), in accord-
ance with a previous report [33]. To evaluate anemia, we
measured the number of erythrocytes and concentration
of hemoglobin (HGB) and hematocrit (HCT) in periph-
eral blood by Celltac alpha (Nihon Kohden, Tokyo,
Japan).

Histological assessment of colitis
On day 7 after the start of exposure to DSS, mice were
euthanized under anesthesia, and the colons and spleens
were collected (we used the adapted Swiss roll technique
to collect the colons). Samples were fixed in 4% parafor-
maldehyde and then embedded in paraffin. Sections of
3.5-μm thickness were stained with hematoxylin and
eosin (H&E). Histological analysis of colitis was per-
formed by an observer blinded to the genotypes of the
mice. The severity of colitis was rated on the basis of the
degree of epithelial damage and inflammatory infiltra-
tion. The scores for epithelial damage were as follows:
no obvious damage, 0; loss of goblet cells, 1; loss of
crypts in the basal one third of the epithelium, 2; loss of
crypts in the basal two thirds of the epithelium, 3; and
damage to the entire crypt with an intact surface epithe-
lium, 4.
Inflammatory infiltration was scored as follows: no in-

filtration, 0; infiltration around crypt bases, 1; infiltration
reaching the muscularis mucosa, 2; extensive infiltration
reaching the muscularis mucosa and thickening of the
mucosa with abundant edema, 3; and infiltration of the
submucosa, 4. The histological score was calculated as
the sum of the epithelial damage and inflammatory infil-
tration scores (maximum score: 8), in accordance with
previous reports [33, 34].

Epithelial barrier permeability
Intestinal barrier function was assessed with fluorescein
isothiocyanate (FITC)-dextran with an average molecular
weight of 3000 to 5000 (FD4; Sigma), according to a pre-
vious report [35]. Briefly, mice were deprived of food
overnight and then FITC-dextran was administered or-
ally (10 mg/mouse at a concentration of 25 mg/mL).
After 4 h, blood was immediately collected by cardiac
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puncture at the time of euthanasia under the anesthesia.
The FITC-dextran content in serum was determined by
FLUOstar OPTIMA (BGM LABTECH, Offenburg,
Germany) with excitation and emission wavelengths of
485 nm and 520 nm, respectively. Dilutions of FITC-
dextran were used as a standard curve.

Real-time PCR analysis
Total RNA was isolated from the colon with a NucleoS-
pin RNA kit (Macherey-Nagel, Duren, Germany). First-
strand cDNAs were synthesized with SuperScript VILO
(Thermo Fisher Scientific, Waltham, MA, USA), and
then real-time PCR was performed with a Thunderbird
SYBR qPCR Mix (Toyobo, Osaka, Japan) in the ABI
7500 Real-Time PCR System (Thermo Fisher Scientific).
The primer sets (Eurofins, Luxembourg City,
Luxembourg) used in this study are listed in Table 1.
The cycling conditions of the PCR reaction were as fol-
lows: 1 min at 95 °C, followed by 40 cycles of 15 s each
at 95 °C and 1 min at 60°C. The threshold cycle value
was normalized by reference to glyceraldehyde 3-
phosphate dehydrogenase (GAPDH).

Western blot analysis
The tissues were homogenized and lysed in a buffer con-
taining 40 mmol/L Tris/HCl (pH 7.4), 150 mmol/L
NaCl, 2 mmol/L EDTA, 1 mmol/L dithiothreitol, 1%
Triton X-100, 2 mmol/L sodium orthovanadate, 10
mmol/L NaF, and 10 mmol/L sodium pyrophosphate

supplemented with a protease inhibitor cocktail mixture
(Sigma, St Louis, MO, USA). Protein contents were mea-
sured by a BCA protein assay kit (Thermo Fisher Scien-
tific, Waltham, MA, USA), and bovine serum albumin
was used as a standard. Samples were separated by so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis,
and then proteins were transferred onto an Amersham
Hybond PVDF membrane (GE Healthcare, Little Chal-
font, UK). After a blocking procedure, the membrane
was incubated with anti-mPGES-1 (No. 160140; Cayman
Chemicals, Ann Arbor, MI, USA), anti-cPGES (No.
160150; Cayman Chemicals), anti-COX-2 (No. 160106;
Cayman Chemicals), anti-COX-1 (NAB37401; R&D Sys-
tems, Minneapolis, MN, USA), or anti-β-actin (clone
2F3; Fujifilm Wako Pure Chemical, Osaka, Japan) anti-
body and then incubated with a secondary antibody
coupled to horseradish peroxidase (Jackson ImmunoRe-
search Laboratories, PA, USA). After washing, protein
was detected by enhanced chemiluminescence (GE
Healthcare, Little Chalfont, UK).

Measurement of PGE2 and PGD2

Tissues were homogenized in 70% methanol supple-
mented with 30 μM indometacin. The homogenates
were centrifuged at 15,000 g at 4 °C for 20 min. The
supernatant was evaporated under a nitrogen gas stream
and suspended in enzyme immunoassay buffer, and the
levels of PGE2 and PGD2 as a MOX-PGD2 (a stable me-
tabolite of PGD2) were measured by enzyme-linked

Table 1 Primer sequences of various target genes for real-time PCR.

Target gene Sense primer Antisense primer

mPGES-1
COX-2
cPGES
COX-1
EP1
EP2
EP3
EP4
Occludin
Claudin-1
IL-17A
IFNγ
IL-2
TNFα
IL-1β
IL-6
TGFβ1
IL-23p19
IL-12/23p40
IL-12p35
IL-10
Bak
Bid
Bim
Bad
Noxa
Bcl2
GAPDH

5’-AGCACACTGCTGGTCATCAA-3’
5’-AGGACTCTGCTCACGAAGGA-3’
5’-TGTTTGCGAAAAGGAGAATCCG-3’
5’-GCCAGAACCAGGGTGTCTGT-3’
5’-TGCCTCATCCATCACTTC-3’
5’-TATGCTCCTTGCCTTTCAC-3’
5’-GCTGTCCGTCTGTTGGTC-3’
5’-CATCTTACTCATCGCCACC-3’
5'-AAGCAAGTTAAGGGATCTGC-3'
5'-CCCCATCAATGCCAGGTATG-3'
5’-CAGGGAGAGCTTCATCTGTGT-3’
5’-CGGCACAGTCATTGAAAGCCTA-3’
5’-CCTGAGCAGGATGGAGAATTACA-3’
5’-TCCCCAAAGGGATGAGAAG-3’
5’-ACTGTGAAATGCCACCTTTTG-3’
5’-TCCAGTTGCCTTCTTGGGAC-3’
5’-CTTCAATACGTCAGACATTCGGG-3’
5’-CCAGCAGCTCTCTCGGAATC-3’
5’-TGGGAGTACCCTGACTCCTG-3’
5’-AGTTTGGCCAGGGTCATTCC-3’
5’-GGTTGCCAAGCCTTATCGGA-3’
5’-GATGATATTAACCGGCGCTACG-3’
5’-TAGGCGATGAGATGGACCACAA-3’
5’-GATCGGAGACGAGTTCAACGAA-3’
5’-GACGGGCAGCCACCAACAGTCAT-3’
5’-GTGGAGTGCACCGGACATAACT-3’
5’-ACAACATCGCCCTGTGGATGAC-3’
5’-GTCTTCACCACCATGGAGAAGG-3’

5’-CTCCACATCTGGGTCACTCC-3’
5’-TGACATGGATTGGAACAGCA-3
5’-ACCCATGTGATCCATCATCTCA-3’
5’-GTAGCCCGTGCGAGTACAATC-3’
5’-ACCACCAACACCAGCAG-3’
5’-GACAACAGAGGACTGAGCG-3’
5’-CCTTCTCCTTTCCCATCTG-3’
5’-ATGTAAATCCAGGGGTCCA-3’
5'-CAGATTAGAGTCCAAAGTCA-3'
5'-CACCTCCCAGAAGGCAGAGG-3'
5’-GCTGAGCTTTGAGGGATGAT-3’
5’-GTTGCTGATGGCCTGATTGTC-3’
5’-TCCAGAACATGCCGCAGAG-3’
5’-CACTTGGTGGTTTGCTACGA-3’
5’-TGTTGATGTGCTGCTGCGAG-3’
5’-GTGTAATTAAGCCTCCGACTTG-3’
5’-GTAACGCCAGGAATTGTTGCTA-3’
5’-CGGATCCTTTGCAAGCAGAA-3’
5’-GGAACGCACCTTTCTGGTTA-3’
5’-CAGGTTTCGGGACTGGCTAAGA-3’
5’-ACCTGCTCCACTGCCTTGCT-3’
5’-CAGCTGATGCCACTCTTAAATA-3’
5’-GGAAGGCTGTCTTCACCTAGTC-3’
5’-TTCTCCATACCAGACGGAAGAT-3’
5’-AAGGGCTAAGCTCCTCCTCCAT-3’
5’-TGAGCACACTCGTCCTTCAAGT-3’
5’-CAGAGACAGCCAGGAGAAATCA-3’
5’-TCATGGATGACCTTGGCCAG-3’
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immunosorbent assay kits (Cayman Chemicals, Ann
Arbor, MI, USA), according to the manufacturer’s proto-
col [36]. Optical density was measured with the Bench-
mark microplate reader (Biorad, Hercules, CA, USA).

Immunofluorescence double staining
Colons (obtained by the adapted Swiss roll technique)
were embedded in OCT compound, snap-frozen, and
stored at – 80 °C. Cryostat sections (10 μm) were fixed
in cold acetone and stained with an anti-mPGES-1
monoclonal antibody (ab180589, Abcam, Cambridge,
UK) and Alexa Fluor 594-conjugated anti-E-cadherin
(clone DECMA-1, a marker of epithelial cells; BioLe-
gend, San Diego, CA, USA), Alexa Fluor 594-conjugated
anti-CD3 (clone 17A2, a marker of T cells; BioLegend)
or Alexa Fluor 594-conjugated anti-CD11b (clone M1/
70, a marker of monocytes/macrophages; BioLegend).
For the staining of mPGES-1, sections were followed by
incubation with Alexa Fluor 488-conjugated secondary
antibody (Jackson ImmunoResearch) (West Grove, PA,
USA). Color images were obtained by BX51 fluorescence
microscope (Olympus Corporation, Tokyo, Japan).

Isolation of lamina propria mononuclear cells and
splenocytes
Lamina propria mononuclear cells (LPMCs) were iso-
lated according to the modified method in a previous re-
port [37]. Briefly, colon tissues were obtained from WT
and mPGES-1−/− mice on day 7 after the start of expos-
ure to DSS, washed with cold PBS and cut into 1-cm
pieces. The pieces were treated with 5 mM EDTA and 1
mM dithiothreitol in Hanks balanced salt solution to re-
move the epithelial cells, and then the residues were
digested with 1.5 mg/mL collagenase D (Roche diagnos-
tics, Rotkreuz, Switzerland) and 0.05 mg/mL DNase I
(Roche diagnostics). The dispersed cells were separated
in a Percoll gradient to obtain LPMCs. Splenocytes were
also isolated, as described in a previous study [26].

Flow cytometry (FCM) analysis
LPMCs and splenocytes were incubated with anti-CD16/
32 antibody (TruStain fcX; BioLegend) to block FcγII/III
receptor–mediated nonspecific antibody binding before
surface staining of cell surface markers. Cells were then
stained with fluorochrome-conjugated anti-mouse
monoclonal antibodies (BioLegend) against CD3 (clone
17A2) and CD4 (clone GK1.5) before intracellular stain-
ing for interferon-γ (IFNγ) and IL-17A. Isotype controls
were also used to characterize the background signal
from off-target antibody binding. The Zombie Aqua Fix-
able Viability kit (BioLegend) was used in all analyses to
remove dead cells and avoid background or unspecific
staining of dead cells. For staining of IL-17A- and IFNγ-
producing T cells, intracellular staining for IFNγ (clones

XMG1.2; Biolegend) and IL-17A (TC11-18H10.1; Biole-
gend) was performed after stimulation of cells, staining
of surface molecules, and fixation and permeabilization
of cells. Briefly, single-cell suspensions were incubated
with phorbol 12-myristate 13-acetate (50 ng/mL, Sigma),
ionomycin (500 ng/mL, Sigma), and GolgiStop (BD
PharMingen, Franklin Lakes, NJ) for 4 h in vitro in
RPMI1640 supplemented with 10% fetal bovine serum,
penicillin/streptomycin, and freshly added 50 μmol/L 2-
mercaptoethanol, as described in a previous report [27].
The Cytofix/Cytoperm Plus Fixation/Permeabilization
kit (BD PharMingen) was used to fix, permeabilize, and
stain cells, in accordance with the manufacturer’s in-
structions. Tregs were detected with the Treg Detection
kit (Miltenyi Biotec, Bergisch Gladbach, Germany) with
CD3 antibody (clone 17A2), in accordance with the
manufacturer’s instructions. The stained cells were ana-
lyzed by a MACS Quant Analyzer (Miltenyi Biotec). The
gating strategy was always in accordance with the fol-
lowing hierarchy: total events → lymphocyte gate (FSC-
A/SSC-A) → living cells (Live/Dead−) → CD3+CD4+,
with subsequent gating indicated in each experiment.

In vivo CD4 positive T cell depletion
For CD4+ T cell depletion experiments, mice are treated
with 0.1 mg of anti-CD4 monoclonal antibody (clone
GK1.5; Bio X Cell, West Lebanon, New Hampshire) or
0.1 mg of isotype-matched control antibody (clone LTF-
2; Bio X Cell) via intraperitoneal injections on the days
− 1 and + 3 relative to the start of DSS administration
[38]. Depletion of CD4+ T cell was confirmed by FCM
analysis of T cell population in the peripheral blood and
spleen by staining with fluorochrome-conjugated anti-
mouse monoclonal antibodies (BioLegend) against CD3
(clone 17A2) and CD4 (clone RM4.4), CD8 (clone 53-
6.7) and CD11b (clone M1/70).

In situ apoptosis detection
Apoptotic cells were detected by in situ apoptosis detec-
tion kit (Takara Bio Inc, Shiga, Japan), according to the
manufacturer’s protocol. Briefly, paraffin-embedded
colon sections of 3.5-μm thickness (obtained by the
adapted Swiss roll technique) were incubated with a ter-
minal dexoynucleotidyl transferase enzyme and then
with an anti-FITC peroxidase-conjugated secondary
antibody. The positive signals were visualized with 3,3′-
diaminobenzidine (Takara DAB substrate: Takara Bio
Inc, Shiga, Japan), and then sections were counterstained
with methyl green.

Statistical analysis
Data were expressed as the means + SEM. Statistical
analysis was performed with the Sigmastat 3.5 software
(Systat Software, Inc., San Jose, CA, USA). Data from

Kojima et al. Inflammation and Regeneration            (2022) 42:1 Page 5 of 24



more than two groups were compared by 2-way analysis
of variance (ANOVA) followed by Tukey multiple com-
parison test, and data from 2 groups were compared by t
test after testing for normal distribution. P < 0.05 was
considered statistically significant.

Results
Exacerbated DSS-induced colitis in mice with mPGES-1
genetic deletion
mPGES-1−/− and WT mice were given a relatively low
dose of 1% DSS for 7 days, and the severity of colitis was

daily evaluated for a week. As shown in Fig. 1A, after 7
days’ administration of 1% DSS, body weight was signifi-
cantly lower in the mPGES-1−/− mice than in the WT
mice. In addition, both genotypes of 1% DSS–treated
mice exhibited diarrhea and fecal bleeding, but these
colitis symptoms were more severe in mPGES-1−/− mice
than in WT mice. The total DAI colitis scores were also
markedly higher in mPGES-1−/− mice than in WT mice,
as were the separate scores for stool consistency and
bleeding. Weekly food uptake was significantly lower in
mPGES-1−/− mice than in WT mice. Uptake of DSS-

Fig. 1 Clinical course of DSS-induced colitis in mice with a mPGES-1 genetic deletion. A Time course of change in body weight, stool
consistency, bleeding score, and total disease activity index (DAI) score of WT and mPGES-1−/− mice after indicated days of exposure to 1% DSS
(n = 17). B On day 7 after the start of exposure to 1% DSS, the length and weight of the colon were measured as an indirect marker of
inflammation (n = 3 to 17). Pictures of the colon are representative examples in WT and mPGES-1−/− mice. *P < 0.05; 2-way ANOVA followed by
Tukey multiple comparison test
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containing water did not differ between WT and
mPGES-1−/− mice, although the latter showed a trend
towards consuming less water (Fig. S1). Experiments
were mainly performed by using female mice in this
study, but the total DIA scores of male mPGES-1−/−

mice were also significantly higher in male WT mice
after 7 days’ administration of 1% DSS (WT: 5.5 + 0.6 (n
= 4), mPGES-1−/−: 8.4 + 0.5 (n = 5) on Day 7 (*P < 0.05;
t test)).
Colon shortening has been proven to be a useful in-

flammatory marker and indicator of colitis [39]. Consist-
ent with the total DAI score, by day 7, both genotypes of
DSS-treated mice showed colon shortening, but the
colon was significantly shorter in the mPGES-1−/− mice
than in the WT mice (Fig. 1B). No significant differences
in colon weight were observed between the genotypes
and DSS administered.
Notably, only approximately 60% of mPGES-1−/− mice

(8 of 13 mice) survived after 7 days’ exposure to the
higher dose of 2% DSS, but all WT mice (12 of 12 mice)
survived. Thus, the subsequent experiments in the 2%
DSS-treated mPGES-1−/− mice were continued in only
survived mice until day 7 of exposure to DSS.

Histological features of DSS-induced colitis in mPGES-1−/−

mice
Severity of colitis was further assessed by histological
evaluation with H&E-stained colon sections. As shown
in Fig. 2A, after DSS administration, the colons of WT
mice showed the characteristic features of colitis, with
extensive areas of mononuclear infiltrates, focal crypt
epithelial destruction, and edema. Compared with WT
mice, mPGES-1−/− mice showed greater epithelial dam-
age and infiltration of inflammatory cells. After grading
of these histological features by an observer blinded to
the genotypes of the sections, the sum of the epithelial
damage and inflammatory infiltration scores was signifi-
cantly higher in mPGES-1−/− mice than in WT mice
(Fig. 2B).
To characterize the protective effect of mPGES-1 on

the epithelial layer in DSS-treated mice, we quantified
the permeability by orally administering FITC-dextran
to mice and measuring the serum levels. On day 7 after
the start of DSS administration, significantly more
FITC-dextran diffused through the epithelium in
mPGES-1−/− mice than in WT mice (Fig. 2C). DSS treat-
ment resulted in a decrease in the colonic mRNA ex-
pression level of the tight junction molecules occludin
and claudin-1, which play crucial roles in regulating in-
testinal paracellular permeability [40], but the differences
in the expression levels of these molecules between WT
and mPGES-1−/− mice did not reach statistical signifi-
cance in this study (Fig. 2D).

Fig. 2 Histological analysis of DSS-induced colitis in mPGES-1−/−

mice. A Colons of mPGES-1 WT and mPGES-1−/− mice were
collected on day 7 after the start of exposure to 1% DSS, and
sections were stained with H&E. Results are representative examples
adapted with the Swiss roll technique in WT and mPGES-1−/− mice
(n = 5 to 17). Scale bar, 100 μm. B Histological scores in WT and
mPGES-1−/− mice (n = 5 to 17). Colon sections were examined by a
blinded researcher, who calculated the epithelial damage score and
inflammatory infiltration score and summed the 2 scores (maximum
score: 8). C Intestinal permeability was assessed with FITC-dextran on
day 7 after the start of exposure to 1% DSS (n = 9 to 17). *P < 0.05;
2-way ANOVA followed by Tukey multiple comparison test. D
Expression of mRNA for the tight junction molecules occludin and
claudin-1 in colon from mice treated or not treated with 1% DSS for
7 days were analyzed by real-time RT-PCR. Levels of mRNA
expression are shown as the fold induction relative to the
expression in WT mice without DSS administration (assigned the
value “1”). *P < 0.05; 2-way ANOVA followed by Tukey multiple
comparison test (n = 7 to 10)

Kojima et al. Inflammation and Regeneration            (2022) 42:1 Page 7 of 24



mPGES-1−/− mice display anemia and extramedullary
hematopoiesis in spleen
mPGES-1−/− mice exhibited marked splenomegaly by
day 7 after the start of DSS administration, as shown in
Fig. 3A. The weight of the spleens indicated that the
spleens of mPGES-1−/− mice were approximately 2.5-
fold larger after administration of DSS, but the spleens
of WT mice were not affected by DSS. In mPGES-1−/−

mice, histological examination of the spleen after DSS
administration showed massive expansion of the red

pulp along with increased cellularity compared with WT
mice (Fig. 3B). The expansion of splenic red pulp, along
with increased cellularity, represents a key feature of en-
hanced extramedullary hematopoiesis in the spleen [41,
42] and also generally represents a valid cause of an en-
larged spleen with extramedullary hematopoiesis [43,
44]. In severe colitis after long-term, repeated DSS treat-
ment, splenic extramedullary hematopoiesis is increased,
as reflected by increases in spleen weights and the red
pulp, resulting in increased reticulocyte counts in

Fig. 3 Analysis of splenomegaly and anemia in mPGES-1−/− mice. A Spleen was isolated, imaged and weighed on day 7 after the start of
exposure to 1% DSS. B Also on day 7, morphological analysis of the spleen was performed by H&E staining. Representative images are shown.
Scale bar, 500 μm. C Erythrocyte count, hemoglobin (HGB) concentration, and hematocrit (HCT) in the peripheral blood were measured on day 7
after the start exposure to 1% DSS. *P < 0.05; 2-way ANOVA followed by Tukey multiple comparison test (n = 3 to 17)
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response to anemia [45]. Indeed, mPGES-1−/− mice
showed significantly decreased erythrocytes and lower
levels of HGB and HCT in peripheral blood, indicating
severe anemia after DSS administration (Fig. 3C). The
splenomegaly and extramedullary hematopoiesis might
be linked with the anemia associated with gastrointes-
tinal hemorrhage during severe colitis in the absence of
mPGES-1.
In the subpopulation analysis of splenocytes from mice

with colitis, we found no differences in the number of
CD19+, CD11c+, CD11b+, or Gr-1+ cells between WT
and mPGES-1−/− mice (Table S1). We did not detect any
evidence of enhanced immunity in the enlarged spleen
of mPGES-1−/− mice with colitis.

Induction of mRNA expression for mPGES-1 and COX-2 in
DSS-induced colitis
Because we observed greater severity of DSS-induced
colitis in mPGES-1−/− mice, we next determined the
mRNA expression of PG biosynthetic enzymes in the
colon from WT and mPGES-1−/− mice with or without
DSS administration (Fig. 4A). In WT mice, colonic ex-
pression of mPGES-1 mRNA was basally detectable and
significantly increased in a dose-dependent manner at 7
days after the start of DSS administration. As expected,
mPGES-1 expression was completely abolished in
mPGES-1−/− mice either with or without DSS adminis-
tration. The colonic expression of cPGES, a constitutive
isozyme of PGES, was not changed by DSS treatment in
either the WT or mPGES-1−/− mice. Colonic expression
of COX-2 mRNA was significantly increased by DSS in
both WT and mPGES-1−/− mice in a concentration-
dependent manner, and the level of COX-2 expression
in mPGES-1−/− mice was significantly higher than in
WT mice. COX-1 was also expressed in the colon, but
the expression level was similar in both mPGES-1−/− and
WT mice.
After DSS administration, the expressions of EP1, EP3,

and EP4 decreased significantly over time in both WT
and mPGES-1−/− mice, but the expression of EP3 de-
creased faster in mPGES-1−/− mice than in WT mice
(Fig. 4B). In addition, the mPGES-1−/− mice showed in-
creased EP2 expression on day 7 after the start of DSS
administration.

Expression and localization of mPGES-1 and prostanoid
production in the colon
We next examined the protein expression of PGE2 bio-
synthetic enzymes in the colon (Fig. 5A). The colon of
WT mice basally expressed a low level of mPGES-1 pro-
tein, and expression of mPGES-1 was upregulated in re-
sponse to DSS (Fig. 5A). As expected, the colon of
mPGES-1−/− mice did not express mPGES-1 protein, ei-
ther with or without DSS administration. In addition,

COX-2 protein was not detected without DSS adminis-
tration, but it was significantly induced by DSS in both
WT and mPGES-1−/− mice. The induction of COX-2
was greater in mPGES-1−/− mice than in WT mice. On
the other hand, cPGES and COX-1 protein were present
without DSS administration in both WT and mPGES-
1−/− mice, and the expression of these proteins did not
change after induction of colitis. These results were well
consistent with the mRNA expression patterns of each
enzyme.
We next determined the role of mPGES-1 in colonic

prostanoid production under normal and colitis state. As
shown in Fig. 5B, the basal level of colonic PGE2 without
induction of colitis was low in WT mice. After DSS ad-
ministration, the level of colonic PGE2 increased signifi-
cantly in WT mice in a concentration-dependent
manner but did not increase in mPGES-1−/− mice. Not-
ably, even in non-inflamed colon without DSS, mPGES-
1 genetic deletion resulted in greater reduction of co-
lonic PGE2 when compared with WT mice. These data
clearly indicate that mPGES-1 is the main synthase re-
sponsible for colonic PGE2 production not only in colitis
but also in the healthy condition. A minimal level of
PGE2 was still detectable in mice without mPGES-1, in-
dicating that cPGES and other PGES isozymes other
than mPGES-1 contribute somewhat to colonic PGE2
production.
To further determine whether there was compensatory

shunting of arachidonic acid into other prostanoid path-
ways in the mPGES-1−/− mice, we also measured the
level of colonic PGD2, known as an anti-colitis prosta-
noid [16, 46]. WT and mPGES-1−/− mice displayed simi-
lar baseline levels of PGD2 in the colon; however, DSS
administration resulted in a marked increase of colonic
PGD2 production in mPGES-1−/− mice but not in WT
mice (Fig. 5B).
In our immunohistochemical analysis of WT mice to

identify the site responsible for PGE2 production in the
colon during colitis, we detected mPGES-1 fluorescence
immunoreactivity in the colonic mucosal epithelium and
infiltrated inflammatory cells in underlying connective
tissues and the lamina propria (LP) of WT mice (Fig.
5C). Double staining for mPGES-1 (green) and E-
cadherin, CD3 or CD11b (red), showed mPGES-1 im-
munoreactivity mostly colocalized with immunoreactiv-
ity of an epithelial cell marker, E-cadherin, a T cell
marker CD3 and a monocytes/macrophage marker
CD11b in the colon. In the negative control, which used
the frozen colon section of mPGES-1−/− mice, we did
not detect immunoreactivity in the colonic mucosal epi-
thelium and infiltrated inflammatory cells in underlying
connective tissues and the LP, but likely nonspecific im-
munoreactivity was detected only in the colonic muscu-
lar layer (data not shown). These data suggest that the
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Fig. 4 Expressions of mRNA for PGE2 biosynthetic enzymes and EP receptor subtypes in colon after exposure to DSS. A Expression of mRNA for
PGES and COX isozymes in colon from mice treated or not treated with the indicated dose of DSS for 7 days were analyzed by real-time RT-PCR
(n = 7 to 12). Levels of mRNA expression are shown as the fold induction relative to the expression in WT mice without DSS administration
(assigned the value “1”). *P < 0.05 vs WT mice within each day, †P < 0.05 vs non-DSS-treated WT mice, and ‡P < 0.05 vs non-DSS-treated KO mice;
2-way ANOVA followed by Tukey multiple comparison test. B Expression of EP receptor mRNA in colon from mice treated with 1% DSS for
indicated days was analyzed by real-time RT-PCR (n = 7 to 10). Levels of mRNA expression are shown as the fold induction relative to day 0
expression in WT (assigned the value “1”). *P < 0.05 vs WT mice within each day, †P < 0.05 vs WT at day 0, and ‡P < 0.05 vs KO mice at day 0; 2-
way ANOVA followed by Tukey multiple comparison test
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overexpression of mPGES-1 in the mucosal epithelium,
immune cells, and inflammatory cells at inflammatory
sites could be responsible for elevated PGE2 production
in the colon during colitis.

Facilitation of colonic Th17/Th1-related cytokine
expression in mPGES-1 deficiency
To clarify the mechanism how mPGES-1 exerts protect-
ive effect on the colitis, we next turned our attention to

a T cell immunologic response which is an essential
event in experimental colitis as well as IBD. As shown in
Fig. 6, the colons of mPGES-1−/− mice expressed mark-
edly higher levels of mRNA for IL-17A (Th17 cytokine)
and IFNγ and IL-2 (Th1 cytokines) than the colons of
WT mice after 7 days’ administration of 1% DSS. Not-
ably, after treatment with high dose of 2% DSS the co-
lonic expressions of IL-17A and IFNγ mRNA were also
higher in mPGES-1−/− mice compared with those in WT

Fig. 5 mPGES-1 protein expression and prostanoid production in the colon with colitis by DSS. A Expression of protein for PGES and COX
isozymes in colon on day 7 after the start of exposure to 1% DSS were analyzed by western blot analysis (n = 3). B The levels of PGE2 and PGD2

in the colon from mice treated or not treated with the indicated dose of DSS for 7 days were measured by ELISA. *P < 0.05 vs WT mice within
each day, †P < 0.05 vs non-DSS-treated WT mice, and ‡P < 0.05 vs non-DSS-treated KO mice; 2-way ANOVA followed by Turkey multiple
comparison test (n = 3 to 5). C Representative double immunofluorescence staining image of Swiss-roll colon sections of WT mice on day 7 after
the start of exposure to 1% DSS. Double staining for mPGES-1 (green) and E-cadherin, CD3 or CD11b (red) showed mPGES-1 immunoreactivity
mostly colocalized with an epithelial cell marker, E-cadherin, a T cell marker CD3 and a monocytes/macrophage marker CD11b in the colon
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Fig. 6 Colonic expression profile of Th17/Th1-related cytokines in mPGES-1−/− mice with DSS-induced colitis. Expressions of mRNA for IL-17A,
IFNγ, IL-2, TNFα, IL-1β, IL-6, TGFβ1, IL-23p19, IL-12/23p40, and IL-12p35 in colon from mice treated with 1% DSS for indicated days were analyzed
by real-time RT-PCR (n = 7 to 10). Levels of mRNA expression are shown as the fold induction relative to day 0 expression in WT mice (assigned
the value “1”). *P < 0.05 vs WT mice within each day, †P < 0.05 vs non-DSS-treated WT mice, and ‡P < 0.05 vs non-DSS-treated KO mice; 2-way
ANOVA followed by Tukey multiple comparison test
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mice (IL-17: WT 112.6 + 23.9 (n = 12), KO 210.1 + 60.7
(n = 8); IFNγ: WT 16.4 + 6.7 (n = 12), KO 46.5 + 19.5
(n = 8)). In addition, the colonic expressions of the
major proinflammatory cytokines IL-1β and IL-6, which
are also known to be essential for Th17 cell differenti-
ation from naive CD4+ T cells [47, 48], were higher in
mPGES-1−/− mice. The expression level of TGFβ1, an
essential inducer of Th17 cell differentiation in combin-
ation with IL-6 [49], was also higher in mPGES-1−/−

mice than in WT mice. In contrast, the levels of compo-
nents of IL-23 (IL-23p19 and IL-12/23p40), which were
shown to be a requirement for human Th17 differenti-
ation [50], did not differ between WT and mPGES-1−/−

mice. The expression of IL-12p35, a subunit of IL-12
that was reported as being required for IFNγ-producing
Th1 differentiation [51], was significantly higher in
mPGES-1−/− mice than in WT mice. These results cor-
related well with the pathophysiological and histopatho-
logical evidence of colitis observed under mPGES-1
deficiency in the present study. Taken together, the re-
sults suggest that mPGES-1–driven PGE2 suppresses the
excessive abnormal immune responses associated with
the Th17/Th1-related cytokine during colitis. As unex-
pected, the colonic expression levels of TNFα, one of the
major proinflammatory cytokines relevant to IBD, did
not differ between WT and mPGES-1−/− mice.

Genetic deletion of mPGES-1 results in enhancing
generation of IL-17A– and IFNγ–producing T cells
To further determine the impact of mPGES-1 on the de-
veloping Th17 and Th1 immunologic responses associ-
ated with colitis, after inducing colitis, we determined
the fraction of Th17 and Th1 cells that produced IL-17A
and IFNγ in cell populations from spleen and LP of the
colon from mPGES-1−/− and WT mice. Cells were iso-
lated during colitis, stimulated ex vivo with phorbol 12-
myristate 13-acetate/ionomycin, then surface stained for
CD3/CD4, fixed, stained for intracellular IL-17A and
IFNγ and analyzed by FCM. As shown in Fig. 7A, in
splenocytes in both mPGES-1−/− and WT mice, we
found few Th17 cells that can produce IL-17A. The per-
centage of IFNγ-producing Th1 cells in splenocytes was
also similar in both genotypes. In addition, the IL-
17+IFNγ+ double positive cells in splenocytes were few
in both mPGES-1−/− and WT mice. However, in the
LPMCs from the colon the populations of IL-17A-
producing Th17 cells, IFNγ-producing Th1 cells and L-
17 and IFNγ double-producing cells within CD3+CD4+

cells were larger in mPGES-1−/− mice than in WT mice
(Fig. 7A and B). Compared with WT mice, the numbers
of both CD3+CD4+ Th17 cells and CD3+CD4+ Th1 cells
within LPMCs were also significantly increased in the
colonic LP from mPGES-1−/− mice (Fig. 7B), which was

consistent with facilitation of colonic Th17/Th1-related
cytokine expression under mPGES-1 deficiency (Fig. 6).

Increased Treg population and IL-10 expression in
mPGES-1−/− mice during DSS-induced colitis
We next examined the effect of mPGES-1 genetic deletion
on the population of FoxP3+CD25+ Tregs in LPMCs iso-
lated from colons with DSS-induced colitis. The popula-
tion of FoxP3+CD25+ Tregs was larger and the number of
these cells was higher in mPGES-1−/− mice than in WT
mice (Fig. 8). Furthermore, mPGES-1−/− mice showed
higher expression of colonic IL-10 (an anti-colitis cytokine
also produced by Tregs). These data imply that—in
addition to its visible anti-colitis activity through regula-
tion of Th17/Th1 immunity during colitis—mPGES-1–
driven PGE2 may act as an enhancer of colitis by suppress-
ing anti-colitis activity mediated by Tregs.

Attenuated symptoms of DSS-induced colitis by CD4+ T
cell depletion in mPGES-1−/− mice
To investigate the functional role of T cells in the exacer-
bated DSS-induced colitis under mPGES-1 deficiency, the
course of DSS-induced colitis in mPGES-1−/− mice were
studied upon CD4+ T cell depletion by the treatment with
anti-CD4 monoclonal antibody (Clone GK1.5) prior to
DSS administration (Fig. 9A). The efficacy of CD4+ T cell
depletion was confirmed by FCM analysis of T cell popu-
lation in the peripheral blood, spleen, and LPMCs (Figs.
9B and S2). The treatment with GK-1.5 effectively reduced
the number of CD3+CD4+ T cell in vivo, whereas control
antibody (clone LTF-2) had no effect. Both GK1.5 and
LTF-2 did not affect the population of CD3+CD8+ T cells
and CD11b+ cells (data not shown). As shown in Fig. 9C,
the total DAI colitis scores were significantly lower in
GK1.5-treated mPGES-1−/− mice than in LTF-2-treated
mPGES-1−/− mice. The colon shortening and splenomeg-
aly in mPGES-1−/− mice were also significantly improved
by the treatment with GK1.5 (Fig. 9C and D). These re-
sults suggested the requirement of CD4+ T cells in the ex-
acerbation of DSS-induced colitis under mPGES-1
deficiency. Alternatively, even though the colitis and
splenomegaly in mPGES-1−/− mice were largely sup-
pressed by the treatment of GK1.5, these were remained
to be significantly different when compared to GK1.5-
treated WT mice. The level of IL-17 mRNA was 50%
lower in GK1.5-treated mPGES-1−/− mice than in LTF-2-
treated mPGES-1−/− mice, even though this difference did
not reach statistical significance. The levels of IFNγ and
IL-10 were significantly lower in GK1.5-treated mPGES-
1−/− mice than in LTF-2-treated mPGES-1−/− mice. These
results suggest the contribution of CD4+ T cells in the up-
regulation of these cytokines during DSS-induced colitis
under mPGES-1 deficiency. On the other hand, the co-
lonic expression levels of IL-1β and IL-6, which were
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Fig. 7 Generation of IL-17A- and IFNγ-producing T cells in colonic LPMCs and splenocytes of mPGES-1−/− mice with DSS-induced colitis. A
Representative FCM plot of IL-17A-producing Th17 cells and IFNγ-producing Th1 cells in CD3+CD4+ T cells of splenocytes and colonic LPMCs
isolated from WT and mPGES-1−/− mice with colitis. Colonic LPMCs were pooled from 4 mice in each experiment on day 7 after the start of
exposure to 1% DSS and analyzed by FCM, as described in the Methods (n = 5). B The ratio and the number of IL-17A+ and IFNγ+ cells in
CD3+CD4+ T cells of colonic LPMCs on day 7 after the start of exposure to 1% DSS (n = 5). *P < 0.05 vs WT; t test
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known to be major macrophage cytokines, were signifi-
cantly higher in mPGES-1−/− mice than in WT mice
under either the GK1.5 or LTF2 treatment during DSS-

induced colitis. In addition, the colonic expression levels
of TNFα did not differ between WT and mPGES-1−/−

mice after either the GK1.5 or LTF2 treatment.

Fig. 8 Effect of mPGES-1 gene deletion on the generation of Tregs in DSS-induced colitis. A Representative FCM plot of FoxP3+CD25+ Tregs in
CD3+CD4+ T cells of colonic LPMCs, isolated from WT and mPGES-1−/− mice with colitis. Colonic LPMCs were pooled from 4 mice in each
experiment on day 7 after the start of exposure to 1% DSS and subjected to FCM analysis, as described in the Methods (n = 5). B The ratio and
the number of FoxP3+CD25+ cells in CD3+CD4+ T cells of colonic LPMCs on day 7 after the start of exposure to 1% DSS (n = 5). C Expression of
mRNA for IL-10 in the colon from mice treated or not treated with the indicated dose of DSS for 7 days was analyzed by real-time RT-PCR. Levels
of mRNA expression are shown as the fold induction relative to the expression in WT without DSS administration (assigned the value “1”). *P <
0.05 vs WT within each day, †P < 0.05 vs non-DSS-treated WT mice, and ‡P < 0.05 vs non-DSS-treated KO mice; 2-way ANOVA followed by Tukey
multiple comparison test (n = 7 to 12)
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Fig. 9 (See legend on next page.)
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Analysis of apoptosis in mPGES-1−/− colons
In situ apoptosis analysis revealed that apoptotic cells
were basally detectable in the colon from mPGES-1−/−

mice to the same extent as in the colon from WT mice.
(Fig. 10A and B). After DSS administration, the number
of apoptotic cells significantly increased in both WT and

mPGES-1−/− mice. mPGES-1 deficiency did not affect
the number of apoptotic cells in the colon not only in
colitis but also in the healthy condition. In both WT and
mPGES-1−/− colon, mRNA expression of anti-apoptotic
factor Bcl2 was significantly decreased by DSS, while
mRNA expression of apoptotic marker Bak was

(See figure on previous page.)
Fig. 9 Effect of CD4 positive T cell depletion on the exacerbated DSS-induced colitis in mPGES-1−/− mice. A Schematic representation of the
experimental plan. B The efficacy of in vivo CD4+ T cell depletion was confirmed by flow cytometry analysis of T cell population in the peripheral
blood and spleen (n = 9 to 11). C Time course of change in total disease activity index (DAI) score of WT and mPGES-1−/− mice after indicated
days of exposure to 1% DSS (n = 9 to 11). On day 7 after the start of exposure to 1% DSS, the length of the colon (D) and weight of the spleen
(E) were measured as indirect markers of inflammation (n = 9 to 11). F Expressions of mRNA for IL-17A, IFNγ, IL-10, IL-1β, IL-6, and TNFα in colon
from mice treated with 1% DSS for 7 days were analyzed by real-time RT-PCR (n = 9 to 11). Levels of mRNA expression are shown as the fold
induction relative to the expression in WT mice without DSS administration (assigned the value “1”). *P < 0.05; 2-way ANOVA followed by Tukey
multiple comparison test

Fig. 10 Analysis of apoptosis in mPGES-1−/− colons. A Representative images of Swiss-roll colon sections on day 7 after the start of exposure to
1% DSS. Arrows indicate apoptotic cells. Scale bar, 50 μm. B Quantification of apoptotic cells in colon (n = 5). C mRNA expressions of an anti-
apoptotic factor Bcl2 and apoptotic markers, Bak, Bid, Bim, Bad, and Noxa, in colon from mice treated with 1% DSS for 7 days were analyzed by
real-time RT-PCR (n = 7 to 10). Levels of mRNA expression are shown as the fold induction relative to the expression in WT mice without DSS
administration (assigned the value “1”). *P < 0.05; 2-way ANOVA followed by Tukey multiple comparison test
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significantly increased. These expressions were corre-
lated well with the increased number of apoptotic cells
observed after DSS administration in both WT and
mPGES-1−/− mice. The colonic expressions of other
apoptotic markers, Bid, Bim, Bad, and Noxa, were not
changed by DSS treatment in either the WT or mPGES-
1−/− mice.

Discussion
The present study demonstrates that mPGES-1 plays an
important role in the pathogenesis of DSS-induced col-
itis by showing that genetic deletion of mPGES-1 re-
sulted in greater inflammatory responses, including
multiple colitis parameters and histologically characteris-
tic features of colitis. We also show marked facilitation
of colonic Th17 and Th1 immunity under mPGES-1 de-
ficiency. Furthermore, our findings imply the possible
potential for mPGES-1 as a pathogenic factor of colitis
by suppressing anti-colitis activity mediated by Tregs.
mPGES-1 deficiency enhanced the severity of colitis,

with massive weight loss, diarrhea, intestinal bleeding,
severe epithelial damage, and infiltration of inflamma-
tory cells after exposure to low-dose DSS, which caused
only mild colonic injury in WT mice. A previous study
reported that mPGES-1 genetic deletion enhanced co-
lonic ulceration and caused higher mortality during col-
itis induced by a relatively high dose of DSS [31]. In
another report, the fecal blood score was higher in
mPGES-1−/− mice than in WT mice when mice were
treated with a low molecular weight of high-dose DSS
[30]. These studies partly support the findings of our
study that mPGES-1 has a protective role during colitis.
In a previous study on upstream COX isozymes, mice
lacking COX-2 (COX-2−/− mice) were more susceptible
to DSS-induced colitis than those lacking COX-1 (COX-
1−/− mice); however, after exposure to DSS, COX-1−/−

mice were more susceptible to symptoms of colitis than
WT mice [52], suggesting that both COX-1 and COX-2
are involved in colon injury. Pharmacological inhibition
of both COX-1 and COX-2 and the resultant decrease in
the level of intestinal PGE2 have also been shown to be
responsible for NSAID-dependent exacerbation of DSS-
induced colitis [53]. Furthermore, in a study on mice
lacking EP receptor subtypes (EP−/− mice), it has been
clearly demonstrated that only EP4

−/− mice developed
severe colitis with DSS, while the colitis parameters of
EP1

−/−, EP2
−/−, and EP3

−/− mice were similar to those of
control WT mice [13]. Similarly, a number of studies
with an EP antagonist/antagonist further support the es-
sential role of PGE2 in DSS-induced colitis and that it
mediates its effects via EP4 signaling [13, 54, 55]. Our
findings, together with those of earlier studies, suggest
that the COX/mPGES-1/PGE2 axis could play a pivotal

role in DSS-induced colitis predominantly via EP4
signaling.
One of the important findings of our study is that a

lack of mPGES-1 enhanced the colonic induction of
COX-2 in response to DSS. In addition, mPGES-1 defi-
ciency altered EP2 and EP3 expression after DSS admin-
istration. These results indicate that mPGES-1 and its
associated PGE2 regulate the expression of their up-
stream enzymes and downstream receptors in a feedback
loop. We also demonstrated that induction of mPGES-1
is essential for the marked increase of colonic PGE2 pro-
duction during colitis. This finding is consistent with
similar findings of the response of other tissues and cell
types, such as macrophages, embryo fibroblasts, den-
dritic cells, and splenocytes, to various inflammatory
stimuli [23, 25, 56–58]. Regarding upstream COX, previ-
ous studies showed that colonic PGE2 production is sig-
nificantly lower in DSS-treated COX-2−/− mice than in
both DSS-treated WT and DSS-treated COX-1−/− mice,
indicating the predominant contribution of COX-2 to
colonic PGE2 synthesis during colitis [52]. Thus, coordi-
nated induction of COX-2 and mPGES-1 would be ac-
companied by an increase in PGE2 levels during severe
colitis. Interestingly, the colonic level of PGE2 was
shown to decrease after treatment with a selective COX-
1 inhibitor [53], suggesting that COX-1 also partly con-
tributes to PGE2 production during colitis. Additionally,
colonic tissues of COX-1−/− mice contain almost un-
detectable basal levels of PGE2, indicating that basal
PGE2 production is largely dependent on COX-1 in the
colon [52]. In the present study, we also saw evidence
for a significant reduction in basal PGE2 production in
the absence of mPGES-1 in the colon. mPGES-1 may be
differentially contributing to PGE2 production, which
might be the result of functional coupling to upstream
COX-1.
Noteworthy is that we detected increased production

of colonic PGD2 in mPGES-1−/− mice, which seemed to
be due to shunting of PG precursors down the PGD2

synthetic pathway in the absence of mPGES-1. We also
detected enhanced colonic COX-2 expression as a result
of mPGES-1 deletion. These results suggest that an ele-
vation of COX-2 and the resultant increase in the avail-
ability of PGH2—as the common substrate for the
generation of prostanoid—account for the increased
levels of PGD2 observed in mPGES-1−/− mice. These re-
sults are further supported by our previous study with
mPGES-1−/− dendritic cells, which showed shunting to-
ward PGD2 production [58]. Because a number of stud-
ies demonstrated the anti-colitis activities of PGD2 and
its biosynthetic PGD synthases in both experimental col-
itis and human IBD [16, 46, 59, 60], we propose that the
increased PGD2 may suppress colitis in the absence of
mPGES-1. However, our results showed that lack of
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mPGES-1 conversely exacerbates colitis and suppresses
PGE2 production, even though levels of anti-colitis
PGD2 increase; these findings suggest that during colitis,
mPGES-1–driven PGE2 plays a greater role than PGD2

as an anti-colitis prostanoid.
Our study demonstrated for the first time that

mPGES-1 is overexpressed in the colonic mucosal epi-
thelium and infiltrated inflammatory cells in underlying
connective tissues and the LP in the colon during DSS-
induced colitis. In human IBD including both ulcerative
colitis and Crohn’s disease, mPGES-1 was also found to
be expressed in the epithelial and inflammatory cells that
surround the damaged crypt in the colon during active
colitis [28]; this result strongly supports our finding of
colonic localization of mPGES-1, which we propose to
be responsible for elevated colonic PGE2 production
during colitis. A number of reports indicated the tissue
localization of upstream COX isozymes in mice models
of colitis [61, 62], and the pattern in human IBD was
found to be similar [16, 63]. The reported localizations
of COX isozymes are consistent with the mPGES-1 ex-
pression observed in the present study. COX-1 is consti-
tutively expressed in the crypt epithelium and LPMCs in
both normal and inflamed colon [61]. In contrast, COX-
2 is undetectable in normal colon, but during DSS-
induced colitis, it is elevated in epithelial cells in the
colon [62] and in a number of LPMCs [61]. Notably, a
study demonstrated that COX-2 is required in myeloid
cells and endothelial cells for protection against DSS-
induced colitis, but not in epithelial cells [64]. mPGES-1
might be differently coupled with COX-1 and COX-2,
depending on the expression pattern and its localization
in tissues and cell-specific manner. A variety of inflam-
matory and immune cells may be able to express
mPGES-1 within the colon tissues and may be differ-
ently responsible for PGE2 production. In the present
study, we identified CD3+ cells and CD11b+ cells as the
component of inflammatory cells expressing mPGES-1
in the underlying connective tissues and colonic LP. In
fact, proinflammatory stimuli-activated macrophages
and dendritic cells are able to express mPGES-1, result-
ing in abundant PGE2 production in vitro [22, 58]. Acti-
vated CD4+ T cells also express mPGES-1 and produce
PGE2 in an mPGES-1–dependent fashion [27]. It has
been shown that mPGES-1 is detected with COX-2 to
some extent in the colonic lamia propria in T cell–
driven colitis induced by adoptive transfer of CD4+ ef-
fector T cells in mice [65]. Additionally, the study re-
vealed that T cells lacking mPGES-1–dependent PGE2
production have reduced colitogenicity, whereas
mPGES-1 deficiency in non-lymphoid cells facilitates T
cell–driven colitis [65]; the authors interpreted their
findings as suggesting that the effects of PGE2 derived
from T cells differ from those of PGE2 derived from

other non-lymphoid cells. Further, a previous study in-
vestigated DSS-associated colon tumorigenesis in
ApcΔ14/+ mice, a mouse model of familial adenomatous
polyposis and reported that mPGES-1 is abundantly
expressed in infiltrating cells of colonic ulcerated sites
and that some of the mPGES-1–expressing cells were
vimentin-positive mesenchymal/fibroblast cells [66]. The
group also demonstrated the role of mPGES-1 in the
early inflammatory phase of developing colonic carcino-
genesis in the ApcΔ14/+ mice. Future studies in mice with
tissue-specific deletion of mPGES-1 may further clarify
the intrinsic action of mPGES-1 in distinct cell types in
the colon during colitis.
In mice with DSS-induced colitis, we further investi-

gated the role of mPGES-1 in pathogenic immunity in
IBD. A previous study reported that mice with DSS-
induced colitis show a similar expression profile of cyto-
kines and similar histological changes to those observed
in human IBD [67]. DSS treatment induces Th17 cyto-
kines (such as IL-17A) and Th1 cytokines (including
IFNγ and IL-2) in the colon, and these cytokines are es-
sential for developing colitis [67–69]. In the present
study, we demonstrated for the first time that lack of
mPGES-1 facilitates the colonic expression of Th17 and
Th1 cytokines in DSS-induced colitis. Our study found a
significant increase in colonic expression of IL-17A, as
well as IFNγ and IL-2, during colitis in mPGES-1−/−

mice compared with WT mice. In addition, we showed
that the colonic expressions of IL-1β, IL-6, and TGFβ1,
which are essential cytokines for Th17 cell expansion
and differentiation [47–49], were greater in mPGES-1−/−

mice. Indeed, we found that IL-17A-producing Th17
cells within colonic LP increase in the absence of
mPGES-1, suggesting that during colitis, a mPGES-1–
dependent mechanism regulates Th17 differentiation
and expansion and also lymphocyte infiltration into the
inflammatory sites. The present study also demonstrated
an increase in colonic IFNγ-producing Th1 cells in co-
lonic LP and an elevated expression of IL-12p35, a sub-
unit of IL-12 that differentially expands Th1 cells. In
addition, we found that L-17+IFNγ+ double positive cells
in colonic LP are increased in mPGES-1−/− mice than in
WT mice. A previous study showed that IFNγ+IL-
17+coproducing CD4+ T cells as a pathogenic Th17 cells
are specifically enriched in the inflamed mucosal tissue
of IBD patients but not healthy individuals [70].These
enhanced colonic Th17 and Th1 immune responses ob-
served in mPGES-1−/− mice seems to be associated with
the abnormalities consistent with the colitis.
IL-23 is one of the prominent targets of recent bio-

logical therapies for the treatment of IBD, as well as sev-
eral autoimmune diseases. IL-23 has been shown to
facilitate the expansion and maintenance of Th17 cells,
and the IL-17/IL-23 axis has been shown to be relevant
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in IBD pathogenesis [50]. A previous study demon-
strated that PGE2-EP4 signaling, in combination with IL-
23, regulates Th17 cell expansion in vitro [71, 72]. How-
ever, the present study found that the colonic expression
levels of IL-23 components were similar in both WT
and mPGES-1−/− mice, suggesting that during colitis fa-
cilitation of the Th17 immune response in the absence
of mPGES-1 might be independent of IL-23.
Previous studies focused on the expression of IL-1β

and TNFα as promising proinflammatory cytokines in
the absence of mPGES-1 during colitis [30, 31]. We also
confirmed that during colitis, a lack of mPGES-1 facil-
ities increased expression levels of IL-1β, in addition to
IL-6. On the other hand, in our study, the differences in
the expression levels of TNFα between WT and
mPGES-1−/− mice during colitis did not reach statistical
significance, a finding apparently in contradiction to
published data indicating upregulation of TNFα expres-
sion in the absence of mPGES-1 in DSS-induced colitis
[30]. Previous reports have documented differences in
DSS-induced colitis related to the source of DSS [73,
74]. Therefore, the disparate results obtained from our
study and the report [30] could be explained by the fact
that they performed their studies with low–molecular-
weight DSS, whereas we used high–molecular-weight,
colitis-grade DSS.
FoxP3+CD25+ Tregs have been conclusively shown to

suppress mucosal inflammation associated with murine
colitis [75–77]. In the present study, during DSS-
induced colitis, immune suppressive FoxP3+CD25+

Tregs within colonic LP were markedly increased in
mPGES-1−/− mice compared with WT mice. In addition,
mPGES-1−/− mice had a higher expression of colonic IL-
10, which is well known as an anti-colitis cytokine pro-
duced by Tregs and other immune cells. These results
suggest that mPGES-1 may act as a pathogenic factor of
colitis by negatively regulating immunosuppression me-
diated by both Tregs and IL-10. The reason why Tregs
increase during severe colitis in the absence of mPGES-1
is unknown, but a similar increase of FoxP3+ Tregs was
observed at the site of intestinal inflammation in patients
with IBD [78, 79], even though the Tregs retained potent
suppressive activity [80], implying a possible counteref-
fect of FoxP3+ Tregs against excessive abnormal im-
mune responses associated with IBD. To date, autocrine
and paracrine effects of PGE2 have been shown to be in-
volved in the induction and function of FoxP3+CD25+

Tregs. FoxP3+CD25+ Tregs express COX-2 and suppress
effector T cells by a PGE2-dependent mechanism
in vitro [81]. However, in a colitis model induced by
adoptive transfer of T cells, non-lymphoid mPGES-1–
dependent PGE2 facilitated the expansion of FoxP3+

Tregs and contributed to the resultant suppression of
colonic inflammation, whereas CD4+ effector T cells

expressing mPGES-1 had the potential for developing
colitis [65]. In addition, it has been reported that PGE2-
mediated immunosuppressive mechanisms during colitis
were independent on the function of Tregs [82]. Thus,
the different roles of mPGES-1–associated PGE2 in regu-
lating the differentiation and function of Tregs in human
IBD remain elusive.
A previous study reported that DSS-induced colitis

can be induced in mice depleted of CD4+ helper T cell
by the treatment with CD4 monoclonal antibody [83].
Alternatively, another report demonstrated with CD4+ T
cell depletion that T cells of CD4+ but not CD8+ pheno-
type are responsible for the modulation of DSS-induced
colitis [84]. In our study, CD4+ T cell depletion did not
show obvious effect on DSS-induced colitis in WT mice,
but it effectively reduced symptoms of colitis as well as
colonic expression of Th17 and Th1 cytokines in
mPGES-1−/− mice, suggesting the requirement of CD4+

T cells in the exacerbation of DSS-induced colitis under
mPGES-1 deficiency. Interestingly, even though the
CD4+ T cell depletion was effective in mPGES-1−/− mice,
a part of symptoms were still remained to be signifi-
cantly different when compared with CD4+ T cell–de-
pleted WT mice, suggesting that during colitis, CD4+ T
cell–independent events also play a role to some extent
in the absence of mPGES-1. In the present study, colonic
expressions of IL-1β and IL-6, major macrophage-
related proinflammatory cytokines relevant to IBD, were
still exacerbated in mPGES-1−/− mice under the CD4+ T
cell depletion during colitis. It was previously reported
that PGE2-EP4 signaling modulates macrophage activa-
tion and alters the profile of macrophage cytokines [85,
86], suggesting that macrophages in the colon of
mPGES-1−/− mice may be excessively activated. The de-
tails of events independent of CD4+ T cells remain to be
studied.
A recent study has clearly demonstrated that PGE2-

EP4 system plays an important role in maintaining
homeostasis in the colon. The study indicated that
epithelial-specific deletion of EP4 leads to exacerbation
of DSS-induced colitis, which is associated with en-
hancement of apoptosis in colonic epithelial cells [15].
The present study showed that mPGES-1−/− mice exhib-
ited exacerbation of DSS-induced colitis, but mPGES-1
deficiency did not affect the number of apoptotic cells in
the colon not only in the healthy condition but also in
colitis. In fact, a low level of PGE2 was still detectable in
the mice without mPGES-1, suggesting that cPGES and
other PGES isozymes other than mPGES-1 may contrib-
ute to PGE2 production to maintain colon homeostasis
in colon.
The present study clearly demonstrated that mPGES-1

is the main PGE synthase responsible for intestinal PGE2
production and that mPGES-1–associated PGE2 plays a
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protective role in IBD, partly by regulating immune sys-
tems associated with CD4+ helper T cells. Th17/Th1 im-
mune system of the intestinal tract may be a possible
representative to explain the mechanism of immunomo-
dulation by CD4+ helper T cells in the absence of
mPGES-1. mPGES-1 is a promising candidate for drug
development because mPGES-1 inhibition could specif-
ically diminish the elevated PGE2 production associated
with various autoimmune inflammatory diseases. How-
ever, in IBD, the protective effect mediated by mPGES-
1–driven PGE2 appears to be indispensable for prevent-
ing the hyperactivation of the pathogenic T cell immune
response and resultant intestinal inflammation. Thus,
the present study also provides potentially important in-
formation on the possible disadvantageous effect of
pharmacological mPGES-1 inhibition in patients with
IBD. To investigate the therapeutic efficacy and safety of
mPGES-1 inhibitors, future studies need to assess
whether mPGES-1 inhibitors can mimic the results ob-
served in mPGES-1−/− mice and how their effects differ
from those of traditional COX inhibitors.

Conclusions
mPGES-1 is the main enzyme responsible for colonic
PGE2 production, and deficiency of mPGES-1 facilitates
the development of colitis by affecting the development
of colonic T cell–mediated immunity. mPGES-1 might
therefore impact both the intestinal inflammation and T
cell–mediated immunity associated with IBD.
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