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Osteoclast biology in the single-cell era
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Abstract 

Osteoclasts, the only cells that can resorb bone, play a central role in bone homeostasis as well as bone damage 
under pathological conditions such as osteoporosis, arthritis, periodontitis, and bone metastasis. Recent studies 
using single-cell technologies have uncovered the regulatory mechanisms underlying osteoclastogenesis at unprec-
edented resolution and shed light on the possibility that there is heterogeneity in the origin, function, and fate of 
osteoclast-lineage cells. Here, we discuss the current advances and emerging concepts in osteoclast biology.
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Background
Since C. H. Robin [1] first depicted a multinucleated cell 
on the bone surface, early studies using the latest tech-
nologies at the time such as electron microscopy, bone 
marrow chimera techniques, and in vitro osteoclast cul-
ture systems have been employed to establish the con-
cept that osteoclasts are hematopoietic-origin cells that 
exclusively possess a bone-resorbing capacity [2]. Taka-
hashi et al. provided the first direct evidence that osteo-
blastic cells support osteoclast formation in an in  vitro 
co-culture system, suggesting that osteoblastic cells may 
produce a certain molecule(s) capable of inducing oste-
oclastogenesis [3]. Receptor activator of NF-κB ligand 
(RANKL) was then identified as the long-sought osteo-
clast differentiation factor expressed by osteoblastic cells 
[4–7]. RANKL is indispensable for osteoclast differentia-
tion in humans and mice; the loss or mutation of RANKL 
or its receptor RANK causes osteopetrosis due to a com-
plete lack of osteoclasts in both species [8–10]. To date, 
there is no clear evidence of RANKL-independent osteo-
clastogenesis or any factor that is able to replace RANKL 
functions [10–12]. Macrophage colony-stimulating factor 
(M-CSF) is also an essential osteoclastogenic molecule, 

the lack of which causes an osteopetrotic phenotype [13, 
14]. Osteoblastic cells, including osteoblasts and osteo-
cytes, express both RANKL and M-CSF to support oste-
oclastogenesis in vitro [10].

Recombinant RANKL and M-CSF turned out to be 
sufficient to induce osteoclastogenesis in murine bone 
marrow cells, and this type of in  vitro osteoclast cul-
ture system has been widely used in the bone research 
field (Fig. 1) [4]. Transcriptome studies using the in vitro 
osteoclast culture as well as investigations of the natu-
rally occurring and genetically modified osteopetrotic 
animals revealed a number of essential molecules for 
osteoclast differentiation and activation, providing fun-
damental insights into osteoclast biology [15]. Further-
more, recent studies using single-cell RNA sequencing 
(scRNA-seq) have further advanced our understand-
ing of the regulatory mechanisms underlying osteo-
clastogenesis. In this review, we will summarize basic 
knowledge and discuss recent progress and emerging 
questions in the osteoclast biology field.

The RANKL signaling pathway 
in osteoclastogenesis
After RANKL was discovered as the genuine mas-
ter regulator of osteoclast differentiation, osteoclast 
researches centered on the elucidation of downstream 
signaling pathways of the RANKL/RANK axis. Large-
scale screening (e.g., microarrays and bulk RNA-seq) 
using the in  vitro osteoclast culture identified various 
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RANKL-inducible genes and shed light on the intracel-
lular signaling networks involved in osteoclastogenesis 
(Fig. 1).

RANKL binding to the RANK expressed by osteoclast 
progenitors results in the activation of signaling cascades, 
including the mitogen-activated protein kinase (MAPK) 
and NF-κB pathways via the adaptor protein tumor 
necrosis factor receptor-associated factor 6 (TRAF6) and 
the kinase TGF-β-activated kinase-1 (TAK1) [15, 16]. The 
activation of the MAPK and NF-κB pathways facilitates 
the formation of the c-Fos and c-Jun complex, the AP-1 
dimer critical for osteoclast differentiation [15, 16]. The 
RANKL/RANK signal cooperates with signaling from 
its co-stimulatory receptors: immunoreceptor tyrosine-
based activation motif (ITAM)-containing immunoglob-
ulin-like receptors such as triggering receptor expressed 
on myeloid cells 2 (TREM-2), signal-regulatory protein 
β-1 (SIRP ββ), sialic acid-binding immunoglobulin-like 
lectin 15 (Siglec-15), osteoclast-associated receptor 
(OSCAR), paired immunoglobulin-like receptor A (PIR-
A), and FcγRIII [15, 16]. These receptors are associated 
with ITAM-containing adaptors such as DNAX-acti-
vating protein of 12 kDa (DAP12) and the Fc receptor 
γ-chain (FcRγ) [15, 16]. ITAM phosphorylation leads to 
the recruitment of spleen tyrosine kinase (Syk), result-
ing in the activation of adaptor proteins such as B-cell 
linker (BLNK) and SH2 domain-containing leukocyte 
protein of 76 kDa (SLP76), which function as scaffolds 
that recruit the Tec kinases Btk/Tec and phospholipase 
Cγ (PLCγ) [15, 16]. This complex stimulates the activa-
tion of calcium signaling, leading to the auto-amplifica-
tion of nuclear factor of activated T cells c1 (NFATc1), 
the master transcription factor of osteoclastogenesis [15, 
16]. The inhibition of the expression of anti-osteoclasto-
genic transcription factors (e.g., (Irf8), Bcl6, and MafB) 

by NFATc1 is also required for osteoclast differentiation 
[15, 16] (Fig. 2). NFATc1 choreographs the expression of 
osteoclastogenic genes including DC-STAMP, a trans-
membrane protein essential for osteoclast fusion [17, 
18]. Although certain factors (e.g., DC-STAMP [17], OC-
STAMP [19], ATP6v0d2 [20], and dynamin [21]) required 
for osteoclast fusion have been reported, precise molecu-
lar mechanisms underlying how these fusogenic factors 
cooperatively facilitate osteoclast fusion remain largely 
unclear [22].

Intriguingly, the signaling molecules important for 
osteoclastogenesis turned out to be the factors that 
had been identified and studied in the field of immu-
nology [15, 16]. The NFAT transcription factors play 
a role in T-cell development and activation, while 
immunoglobulin-like receptors are important for the 
activation of innate immune cells. Tec family tyrosine 
kinases are critical for B-cell maturation and immuno-
globulin production. The osteoclast signal studies have 
highlighted the shared molecules and mechanisms 
between the bone and immune systems, thereby criti-
cally contributing to the establishment of the concept 
of “osteoimmunology” [15, 16].

Where does OPG come from?
Osteoprotegerin (OPG) is a circulating decoy receptor 
for RANKL, functioning as an essential negative regula-
tor of osteoclastogenesis by inhibiting the interaction 
between RANKL and its receptor RANK [23–26]. Since 
OPG was first cloned as a “osteoprotective” factor in 
1997, it has long been thought that the OPG level in the 
bone tissue is an important determinant of bone mass, 
and that the serum OPG level may also be associated 
with bone pathologies such as osteoporosis and rheuma-
toid arthritis. However, the cellular source of OPG in vivo 

Fig. 1 Schematic of the osteoclast culture system. Murine bulk bone marrow cells are treated with M-CSF for 2 days, and then, these cells are 
stimulated with RANKL in the presence of M-CSF. Osteoclasts appear in the culture system after 3–5 days of RANKL stimulation. The osteoclast 
culture contains heterogeneous populations of cells, only a portion of which is able to differentiate into mature osteoclasts
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has long been unknown, as OPG is expressed in various 
tissues and circulates in the blood. Furthermore, it has 
been obscure whether OPG functions only at the site of 
production or circulates to other tissues so as to function 
in an endocrine manner.

Recently, two independent studies generated OPG-
floxed mice and demonstrated that the OPG locally 
produced by osteoblasts, but not circulating OPG, is 
essential for bone homeostasis [27, 28]. Deletion of OPG 
in osteoblasts by using Sp7-Cre or Dmp1-Cre mark-
edly decreased bone volume, whereas OPG deletion in 
B cells (Mb1-Cre) or osteocytes (Sost-Cre) did not [27, 
28]. Intriguingly, osteoblast-specific OPG-deficient mice 
retained normal serum OPG levels, indicating that cir-
culating OPG does not affect bone metabolism [27, 28]. 
This was also true in the thymus and intestine, two other 
organs where the RANKL/RANK/OPG system plays a 

key role [27]. Medullary thymic epithelial cell (mTEC) 
and intestinal microfold cell (M cell) were shown to be 
the primary sources of OPG in the thymus and intestine, 
respectively [27]. Deletion of locally produced OPG dis-
rupted thymic and intestinal homeostasis without affect-
ing the serum OPG level [27]. These findings highlight 
the importance of the tight regulation of RANKL activity 
by local OPG production in vertebrate homeostasis.

Intriguingly, an analysis of the bone tissue scRNA-seq 
dataset showed that OPG is highly expressed in the oste-
oblast subtype characterized by a high expression of an 
extracellular matrix protein decorin (Dcn) [27]. RANKL 
mRNA expression was detected in the other osteoblast 
subtype  (Bglaphi osteoblastic cells), but not in the  Dcnhi 
osteoblastic cells [27]. Since osteoblastic cells con-
trol osteoclastogenesis by producing both RANKL and 
OPG in the in  vitro co-culture system, it has long been 

Fig. 2 Molecular mechanisms underlying osteoclast differentiation. RANKL, the master regulator of osteoclastogenesis, is expressed by osteocytes 
and  Bglaphi osteoblasts.  Dcnhi osteoblasts locally produce OPG to inhibit osteoclast differentiation and activation. RANKL binding to RANK 
expressed by osteoclast progenitors results in the activation of signaling cascades including MAPK and NF-κB pathways via TRAF6 and TAK1. The 
RANKL/RANK signal cooperates with signaling from ITAM-containing immunoglobulin-like receptors such as TREM-2, SIRP ββ, Siglec-15, OSCAR, 
PIR-A, and FcγRIII. These signaling cascades ultimately lead to the auto-amplification of NFATc1, the master transcription factor of osteoclastogenesis
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assumed that the osteoblastic cells that produce RANKL 
and OPG are the same population [29]. However, it is 
unknown whether all the osteoblastic cells equally pro-
duce OPG, or there is an osteoblastic cell subset that 
highly produces OPG. The data obtained from scRNA-
seq analysis suggests that RANKL-expressing and OPG-
expressing cells may represent distinct subsets [27]. 
Further studies are needed to understand the heteroge-
neity and functional diversity of osteoblasts (Fig. 2).

Single‑cell landscape of osteoclastogenesis
The understanding of the molecular mechanisms under-
lying osteoclastogenesis has largely relied on the data 
obtained from transcriptome analyses, including micro-
arrays and bulk RNA-seq performed on the in vitro oste-
oclast culture, and a number of the important signaling 
molecules for osteoclastogenesis have been identified 
using this approach (Fig. 1). However, this osteoclast for-
mation system has a critical limitation; the culture sys-
tem contains heterogeneous populations of cells (Figs. 1 
and 3a). This cellular heterogeneity has hampered a pre-
cise understanding of the molecular mechanisms under-
lying osteoclastogenesis and made it difficult to identify 

key osteoclastic genes that are expressed at low levels in 
osteoclasts or expressed by contaminating cells [30].

A recent study that applied scRNA-seq on the oste-
oclast culture system identified the stepwise cell fate 
decision pathways during osteoclast differentiation 
[30] (Fig.  3b and c). Unexpectedly, in silico trajec-
tory analysis suggested that monocytic precursor cells 
transitioned through CD11c-expressing dendritic cell 
(DC)-like status in the early stage of osteoclastogen-
esis [30]. Several studies have proposed that DCs may 
function as osteoclast precursor cells based on the find-
ings that FACS-sorted  CD11c+ cells can differentiate 
into osteoclasts in in vitro culture and in vivo transfer 
models [31–34]. However, it was reported that osteo-
clast formation is not decreased in mice lacking mature 
DCs, suggesting that DCs are dispensable for osteoclas-
togenesis under physiological conditions [35]. Thus, the 
contribution of DCs to osteoclast formation has been 
controversial. The in silico trajectory inference based on 
the scRNA-seq data suggested that CD11c is transiently 
expressed in early stage osteoclast precursors [30]. This 
computational prediction was validated by demon-
strating that CD11c-Cre-mediated deletion of RANK 

Fig. 3 Single-cell landscape of osteoclastogenesis. a Representative image of osteoclast differentiation culture system after 3 days of RANKL 
stimulation in bone marrow cells from CtsK-Cre CAG-CAT-EGFP mouse. The multinucleated giant cells labeled with EGFP are osteoclasts. Most of the 
cells in the culture system failed to differentiate into mature osteoclasts. Green (EGFP), CTSK; red, actin; blue, DAPI. b The osteoclast differentiation 
trajectory estimated by pseudotime analysis using the scRNA-seq data obtained from the in vitro osteoclast culture system. c Schematic of the 
stepwise cell fate decision pathways during osteoclastogenesis unveiled by scRNA-seq
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significantly inhibited osteoclast formation in  vivo 
and in vitro [30]. The transient expression of CD11c in 
osteoclast precursors may resolve the controversy over 
the role of DCs in osteoclast formation. It will be inter-
esting to investigate the physiological relevance of the 
transient CD11c expression in osteoclastogenesis.

DC-like precursors then undergo stepwise biological 
processes, membrane raft assembly, proliferation, cell-
cycle arrest, and the terminal differentiation into mature 
osteoclasts [30] (Fig. 3b and c). Cited2 was identified as 
a transcriptional regulator, the expression of which was 
progressively elevated during the trajectory of osteoclast 
differentiation [30]. Cited2-deficient cells only give rise 
to proliferating pre-osteoclasts and fail to proceed to cell 
cycle-arrested pre-osteoclasts, suggesting that Cited2 is 
required for cell-cycle arrest, an essential step in the ter-
minal differentiation of osteoclasts [30]. This hypothesis 
is consistent with previous findings that Cited2 and its 
binding partner CBP/p300 are crucial for cell cycle arrest 
in various cell types [36, 37].

Interestingly, in silico pseudotime analysis suggested 
that there is another trajectory in the osteoclast cul-
ture system: the monocytic precursors differentiate into 
“failed osteoclasts” that express certain osteoclast mark-
ers such as tartrate-resistant acid phosphatase (TRAP), 
matrix metalloproteinase 9 (MMP9), and cathepsin K 
(CtsK), but do not have sufficient potential to become 
bona fide osteoclasts [30]. It remains unclear why the 
same precursor cells have a different fate under the iden-
tical culture conditions and whether such “failed osteo-
clasts” actually exist and are functionally effective in vivo.

There are several studies that have applied scRNA-seq 
to the primary cells collected from bone tissues, but oste-
oclast-lineage cells are not always covered by the scRNA-
seq datasets, probably due to limitations of cell size and 
the strong bone-adhesive nature of these cells [38–41]. A 
study performing scRNA-seq on  tdTomato+ cells sorted 
from the bone marrow of Col2-Cre Rosa-tdTomato mice 
captured not only mesenchymal cells but also hematopoi-
etic contaminants, including osteoclast-lineage cells [42]. 
Trajectory analysis suggested that monocytic precursors 
underwent bilineage differentiation into mature osteo-
clasts with a progressive increase in Cited2 expression 
and also into another macrophage cluster (termed Mφβ) 
which exhibits low-level expression of certain osteoclast 
markers such as TRAP, MMP9, and CtsK [42]. These data 
are similar to the scRNA-seq data obtained from in vitro 
osteoclastogenesis [30], and it will be interesting to deter-
mine whether the Mφβ cells in vivo represent the “failed 
osteoclasts” found in the in vitro culture system.

Heterogeneity in the origin, function, and fate 
of osteoclasts
Single-cell analysis is a powerful strategy for the decon-
volution of heterogeneous populations of cells, and the 
development and widespread use of scRNA-seq tech-
nology have led to the discovery of novel subsets within 
cell types previously believed to be comprised of a single 
population. Thus, questions have arisen about whether 
there is heterogeneity in osteoclast-lineage cells (Table 1). 
Traditionally, the heterogeneity of osteoclasts has been 
discussed in terms of anatomical localization and the 

Table 1 The heterogeneity of hard tissue-resorbing cells. Diversity in hard tissue-resorbing cells at different sites and biological 
settings

Cell types Characteristics References

Calvarial osteoclasts Larger in size and utilize distinct proteases from long bone osteoclasts [43–45]

Odontoclasts Resorb dental tissues, but differences from osteoclasts are not clear [46]

Vascular-associated osteoclasts (VAOs) Closely associated with type H vessels to regulate blood vessel growth [47]

Septoclasts Cartilage-resorbing mesenchymal cells characterized by expression of 
FABP5 and MMPs

[48]

Type H endothelial cells Produce MMP9 to degrade cartilage [47]

Arthritis-associated osteoclastogenic macrophages (AtoMs) Arthritis-associated osteoclast precursors controlled by transcription factor 
FoxM1

[49]

Osteoclast precursors with myeloid suppressor function Expand in the bone marrow of arthritic mice and inhibit T-cell proliferation [50]

Osteoclasts associated with bone loss induced by colitis 
and estrogen deficiency

Containing heterogeneous population with distinct immune regulatory 
functions

[51, 52]

Fracture-associated osteoclasts Derived from yolk-sac macrophage descendants residing in the adult spleen [53]

Fracture-associated circulating CX3CR1+ precursors Migrate to the fracture sites and differentiate into osteoclasts [54]

Obesity-associated osteoclast precursors High-fat diet-induced monocytic MDSCs capable of differentiating into 
osteoclasts

[55]

Osteomorphs Daughter cells produced by osteoclast fission capable of fusing back into 
osteoclasts

[56]
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types of hard tissue resorbed. It is reported that calvarial 
osteoclasts have a larger size than long bone osteoclasts 
and may utilize different proteases to degrade the bone 
matrix [2, 43, 44]. For instance, MMP2-deficient mice 
exhibit increased bone volume only in the calvariae and 
not in the long bones [45]. These findings suggest that the 
osteoclasts localized to intramembranous and endochon-
dral bones may have distinct characteristics.

As subpopulations of osteoclasts, odontoclasts, which 
resorb teeth, and chondroclasts, which are involved in 
cartilage resorption, have been documented by histo-
logical studies (Table  1). Odontoclasts express osteo-
clast markers and exhibit structural features similar to 
osteoclasts, but the detailed characteristics of odonto-
clasts remain thus far only poorly understood [46]. Since 
RANKL-deficient mice completely lack osteoclasts but 
display only minor growth plate cartilage abnormalities, 
it has long been enigmatic which cell types are respon-
sible for the function of “chondroclasts” [57]. Recently, 
specialized endothelial cells (type H) [47] and mesen-
chymal-derived septoclasts [48] were shown to produce 
MMPs, critically contributing to cartilage resorption. 
Unlike osteoclast of which differentiation is controlled by 
RANKL provided by osteoblastic cells, septoclast specifi-
cation was regulated by the Notch ligand delta-like 4 pro-
vided by endothelial cell.

Intriguingly, a detailed analysis of the osteoclasts local-
ized at the bone/cartilage interface suggested that they 
display low CtsK expression levels and are closely associ-
ated with type H endothelial cells [47]. These cells were 
termed vascular-associated osteoclasts (VAOs) and 
shown to contribute to blood vessel growth, but not car-
tilage degradation [47]. Thus, cartilage degradation might 
be mediated by cell types distinct from osteoclasts.

Osteoclasts are essential not only for physiological 
bone remodeling but also for pathological bone destruc-
tion [58, 59], and the concept of “disease-associated 
osteoclasts” is currently attracting attention in the field 
(Table  1). Hasegawa et  al. identified a novel arthritis-
associated osteoclast precursor macrophage (AtoMs) 
which gives rise to pathogenic osteoclasts in the arthritic 
synovium in a manner dependent on the transcription 
factor FoxM1 [49]. During arthritis,  CD11b–/lo  Ly6Chi 
cells are expanded in the bone marrow, and these cells 
may function as osteoclast precursors as well as myeloid-
derived suppressor cells (MDSCs) inhibiting T-cell prolif-
eration [50]. In other bone loss models induced by colitis 
and estrogen deficiency, certain myeloid cell populations 
were also reported to be capable of differentiating into 
osteoclasts and regulating T cells in vitro, but their path-
ological relevance in  vivo remains unclear [51, 52]. In a 
high-fat diet-induced obesity model, monocytic MDSCs 
were shown to be expanded and to have the capacity to 

differentiate into osteoclasts in  vitro [55] (Table  1). As 
“disorder-specific monocyte/macrophage subtypes” cor-
responding to certain diseases have been reported [60], 
it is possible that osteoclasts are composed of multiple 
subsets corresponding to a variety of disorders. Inves-
tigations into such disease-associated osteoclasts may 
contribute to the development of therapeutic strategies 
against pathological bone damage without affecting phys-
iological bone metabolism.

The origin of osteoclasts has been shown to vary 
depending on the life stage [61]. During development 
and the early life stages, osteoclasts originate from yolk-
sac erythromyeloid progenitors (EMPs), whereas bone 
marrow hematopoietic stem cells (HSCs) are the source 
of osteoclasts in adults [61]. During fracture healing, 
 CX3CR1+ yolk-sac macrophage descendants residing in 
the adult spleen migrate to the bone injury sites and dif-
ferentiate into osteoclasts [53]. Another paper has also 
shown that osteoclasts at the fracture sites are derived 
from circulating  CX3CR1+ cells, supporting the notion 
that the fracture-associated osteoclasts are supplied 
by the bloodstream [54] (Table  1). Intriguingly, it was 
shown that HSC-derived and EMP-derived precursors 
can fuse with each other to differentiate into osteoclast 
[53]. Thus, in order to understand the functional diversity 
of osteoclasts derived from distinct precursors, it will be 
important to elucidate the regulatory mechanisms of the 
multinuclear system, i.e., the interactions (or hierarchy) 
among the nuclei (Fig. 4).

There may be heterogeneity in the fate of osteoclasts. It 
has long been thought that osteoclasts have a life span of 
2–4 weeks and die quickly by apoptosis after the termi-
nation of bone resorption [62]. However, a recent study 
proposed that osteoclasts may live more than 6 months 
by acquiring new nuclei from circulating precursors 
based on the following observation; when parabionts of 
Csf1r-Cre: Rosa26LSL-YFP mouse (osteoclast precursors 
labeled with YFP) and Csf1r-Cre: Rosa26LSL-tdTomato 
mouse (osteoclast precursors labeled with tdTomato) 
were separated after 4 weeks of shared blood circula-
tion, most osteoclasts retained the expression of both 
YFP and tdTomato, even at 6 months after the separa-
tion [61]. Since this observation cannot rule out the pos-
sibility that it is not osteoclasts but rather “osteoclast 
precursors” that are long-lived, as proposed by previ-
ous reports [63–65], further studies are needed to clar-
ify the life span of mature osteoclasts in  vivo. Recently, 
a study with intravital imaging approaches showed that 
high-dose RANKL injection led to an alternative cell fate 
in which osteoclasts fission into daughter cells, termed 
“osteomorphs” (Table  1). Osteomorphs can fuse and 
recycle back into osteoclasts, and scRNA-seq analysis 
suggested that osteomorphs are transcriptionally distinct 
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from osteoclasts and macrophages [56]. Given that high-
dose RANKL injection is required to observe osteoclast 
fission, osteomorphs may develop under pathological 
rather than physiological conditions. Further studies are 
required to clarify the relevance of osteoclast fission and 
osteomorphs in health and disease.

Concluding remarks and perspectives
Single-cell technology has brought about a new era in life 
science, and the pathophysiology of the skeletal system is 
now being described by the data gathered from individ-
ual cells. Recent studies using scRNA-seq analysis have 
unveiled the molecular mechanisms underlying osteo-
clastogenesis at an unprecedented level of resolution. 
Furthermore, increasing attention has been paid to the 
heterogeneity that characterizes the origin, function, and 
fate of osteoclasts, but we are still far from understand-
ing the comprehensive picture (Fig. 4). Where do osteo-
clasts come from, what do they do, and where do they 
go? Further investigations into osteoclast biology using 
single-cell technology will provide key insights that will 
undoubtedly contribute to advances in therapeutic strat-
egies targeting osteoclasts in skeletal diseases.
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