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Abstract 

Background: Inflammatory response is an important characteristic affecting prognosis and therapeutic response 
in lower-grade glioma (LGG). However, the molecular subtypes based on inflammatory response are still under 
exploitation.

Methods: The RNA sequencing, somatic mutation, and corresponding clinical data from 1205 LGG patients were 
obtained from the TCGA, CGGA, and Rembrandt cohorts. Consensus clustering was performed to identify molecular 
subtypes associated with inflammation. Prognosis, clinicopathologic features, immune cell infiltration, and somatic 
mutation profile were compared among these inflammation-associated subtypes.

Results: Our results demonstrate that LGG could be categorized into inflammation-, low, -mid, and -high subtypes 
with distinct clinicopathologic features, prognostic and tumor microenvironment. We established that this catego-
rization was reproducible, as well as predictable. In general, inflammation-high subtype presents a dismal prognosis 
with the immunosuppressive microenvironment and high frequency of oncogene mutation. Inversely, inflammation-
low subtype was associated with the most favorable clinical outcomes with the immunoreactive microenvironment 
among three subtypes. Moreover, we develop and validate an inflammation-related prognostic model, which shows 
strong power for prognosis assessment.

Conclusion: In conclusion, we established a novel glioma classification based on the inflammation subtype. This 
classification had significant outcomes for estimating the prognosis, as well as the tumor microenvironment.
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Introduction
Inflammation is an ancient evolved biological process 
that combines the activation, recruitment, and activity 
of innate and adaptive immune cells [1, 2]. The precise 
role of inflammation in the occurrence, progression, and 

therapy of cancer has gained much research interest. It 
has been widely established that inflammation may per-
form a substantial function in carcinogenesis at all stages 
[3]. Acute inflammation increases cancer cell death by 
activating an antitumor immune response, but persistent 
inflammation induced by treatment enhances resistance 
against treatment and the progression of cancer [4, 5]. 
In addition, inflammation is associated with the clinical 
outcome, especially with immunotherapy, an auspicious 
therapeutic strategy for cancer treatment [6].
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Glioma has been identified as the most prevalent pri-
mary malignancy located in the central nervous system, 
whose features include unfavorable proliferation as 
well as invasion of tumors [7]. The tumor microenvi-
ronments (TME) of grades II and III gliomas vary sig-
nificantly from each other, despite the fact that these 
tumors are typically considered as diffuse lower-grade 
gliomas (LGGs) in general [8]. The neuroinflammation-
enriched tumor microenvironment is considered as one 
of the important defining features of high-grade glioma 
and is identified as a significant factor contributing to 
the complexity and lethality [9]. The function of inflam-
matory mediators is critical in the establishment of an 
immunosuppressed microenvironment, resulting in the 
increased proliferation, invasion, and preservation of 
high-grade glioma cells’ stemness [10].

Multiple molecular subtypes of glioma have been 
identified, with the most notable being IDH mutations 
and the 1p/19q deletion [11]. We hypothesized that 
molecular subtypes classified by inflammatory response 
may also produce distinct clinicopathologic features, 
prognostic and tumor microenvironment. This study 
aimed to (i) identify molecular subtypes based on 
inflammatory response in LGG; (ii) evaluate the prog-
nostic value, antitumor immunity, and tumor micro-
environment associated with these subtypes; and (iii) 
construct and validate the inflammation-related prog-
nostic model.

Materials and methods
Datasets
A sum of 509 LGG patients was included in the study, and 
their RNA sequencing, somatic mutation, and matching 
clinical information were acquired from the TCGA data-
base (https:// portal. gdc. cancer. gov/). To serve as a valida-
tion set, comparable data were obtained for the 121 LGG 
patients in the Rembrandt cohort (https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE10 8474) and the 575 
LGG patients in the CGGA cohort (http:// www. cgga. org. 
cn/) [12–14]. The clinical information of LGG patients 
was provided in the Additional file 1.

Integration of protein‑protein interaction (PPI) network
A network for protein-protein interactions was con-
structed utilizing the STRING database. Cytoscape 
(https:// cytos cape. org/) is a free and open-source soft-
ware platform that is extensively used to visualize sophis-
ticated networks and merge them with any type of 
attribute data. A network for PPI was constructed, and 
the interaction connections of important genes in inflam-
mation-linked genes were examined utilizing Cytoscape.

Consensus clustering
Consensus clustering was performed to identify molec-
ular subtypes associated with inflammation via the 
“ConcensusClusterPlus” package in R software. Subse-
quently, the optimum cluster numbers between k = 2 
and 10 were identified, after which the procedure was 
repeated 1000 times to ensure that the findings were 
robust and reproducible. A cluster map was created 
using the pheatmap function in the R software.

Principal component analysis
In order to examine the transcriptional patterns of the 
various inflammatory subtypes, principal component 
analysis (PCA) was used. It was necessary to import 
the gene names together with the matching sample data 
and level of expression. Subsequently, the analysis was 
carried out by the “limm” package utilizing the prin-
comp function, and the findings were presented with 
the aid of “ggplot2” package in the R software.

Single‑sample gene‑set enrichment analysis (ssGSEA)
The ssGSEA analysis was used to quantify the inflam-
matory response score of each LGG sample and was 
completed using the “GSVA” and “GSEABase” packages 
in R. Gene signature for the inflammatory response was 
obtained from gene-set enrichment analysis (HALL-
MARK_INFLAMMATORY_RESPONSE), and the gene 
list is provided in Additional file 2.

Calculation of the immune cell type fractions
CIBERSORT was used to measure the 22 different types 
of immune cells infiltration in each LGG sample. In 
the CIBERSORT platform (https:// ciber sort. stanf ord. 
edu/), a leukocyte gene matrix containing 547 genes 
was employed to distinguish 22 immune cells, which 
included eosinophils, memory B cells, neutrophils, T 
cells CD4 naïve, activated mast cells, activated CD4 
memory T cells, resting dendritic cells, T cells regula-
tory (Tregs), macrophages: M0, M1, and M2, mono-
cytes, NK cells activated, T cells gamma delta, T cells 
follicular helper, NK cells resting, resting CD4 memory 
T cells, activated dendritic cells, T cells CD8, resting 
mast cells, naive B cells, neutrophils, and plasma cells 
[15].

Somatic mutation analysis
TCGA GDC Data Portal was used to obtain “maf”-
formatted somatic mutation data for each LGG sample 
(VarScan2 Variant Aggregation and Masking; https:// 
portal. gdc. cancer. gov). Subsequently, the “Maftools” 
function in R software was used to create “waterfall” 
charts, which helped to visualize and summarize the 
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altered genes of the three LGG subtypes and abnormal 
signaling pathways.

Creation of the inflammation prognostic signature
A LASSO cox regression analysis was used to gener-
ate the particular coefficient factors for each correlation 
among the inflammatory-related genes that were found 
to have significance during the univariable Cox regres-
sion analysis. LASSO is a regression analysis method that 
performs both variable selection and regularization to 
improve predictive accuracy and the interpretability of 
the resulting statistical model. Hence, LASSO cox regres-
sion is an excellent option for the development of prog-
nostic models on the basis of gene expression profiles.

Survminer and survival packages for R were used to 
conduct Kaplan-Meier analysis on the survival data 
for the high- and low-risk cohorts, and the results were 
compared.

The single‑cell RNA sequence (scRNA‑seq) analysis
In order to examine scRNA-seq data collected from the 
GSE70630, the tumor immune single-cell hub (TISCH) 
was employed [16]. TISCH is a single-cell RNA-seq data 
source that puts an emphasis on th TME and provides spe-
cific annotation of cell types at the single-cell level, allow-
ing for TME investigation across diverse malignancies [17].

Statistical analysis
The survival and survminer modules in R were utilized 
to perform Kaplan-Meier analysis on patients’ overall 
survival (OS) and provide a comparison between various 
groups. The Kruskal-Wallis test or Wilcoxon signed-rank 
test was used to determine if there were any differences 
between the subtypes. To explore relevant predictive 
markers, we used the univariate Cox analysis. With the 
assistance of the survivalROC R package, an analysis of 
the ROC curve was carried out to determine the accu-
racy of the risk model in anticipating patients’ OS. The R 
software (version: 4.1.0) was used for all of the statistical 
analyses.

Results
Consensus clustering identified three inflammation‑based 
subtypes
The inflammation-related gene set was obtained from 
gene-set enrichment Analysis (HALLMARK_INFLAM-
MATORY_RESPONSE). We used the STRING database 

to perform PPI network analysis on these inflammation-
related genes in order to fully comprehend their inter-
actions with one another (Fig.  1A). Subsequently, we 
identified the LGG inflammation-based clusters utilizing 
consensus clustering. After k-means clustering, we iden-
tified 3 clusters within the TCGA cohort that showed 
different expression patterns of inflammation genes 
(Fig.  1B and C). The expression levels of inflammation 
genes varied among different clusters. Specifically, clus-
ters C2 demonstrated the highest levels of inflammation 
genes expression. In contrast, clusters C3 were found to 
have the lowest expression levels, and clusters C1 showed 
medium levels (Fig. 1D).

Using the ssGSEA method, we also quantified the 
inflammatory response score of each patient. The result 
revealed that patients stratified into clusters C2 pre-
sent the highest inflammatory response score followed 
by C1 and C3 (Fig.  1E). Hence, we designated clusters 
C2 as an inflammation-high subtype, clusters C3 as an 
inflammation-low subtype, and clusters C1 as an inflam-
mation-mid subtype. Subsequently, to compare the 
transcriptional patterns of the various inflammatory sub-
types, the principal component analysis (PCA) was con-
ducted. In general, PCA illustrated that the samples from 
the three clusters were highly isolated from one another, 
which indicated distinct transcriptional profiles among 
these subtypes (Fig. 1F).

We further validated the repeatability of inflammation-
based classification in three large independent sample 
cohorts (CGGA, n = 575, and Rembrandt, n = 121). Sim-
ilarly, patients in CGGA and Rembrandt cohort can be 
stratified into inflammation-low, inflammation-mid, and 
inflammation-high subtypes (Additional file 3).

Patients stratified into different inflammation subtypes 
presented variant prognosis and clinicopathologic features
Previous studies showed that inflammatory responses 
play decisive roles in the tumor development of glioma. 
Survival analyses confirmed that these inflammation-
based subtypes had specific clinical outcomes, which was 
consistent with the available data. In general, the inflam-
mation-high subtype presented a dismal prognosis with 
the shortest overall survival time and progress-free sur-
vival (Fig. 2A). In contrast to the inflammation-high sub-
type, the inflammation-low subtype was associated with 
the most favorable clinical outcomes among the three 

Fig. 1 Identification of three inflammation subtypes in LGGs. A Protein–protein interactions among 200 inflammation response genes. B Delta 
area curve of consensus clustering. C Heatmap depicting consensus clustering solution (k = 3) for 200 genes in 509 samples. D Heatmap of 200 
inflammation response genes expression in different subgroups; red represents high expression, and blue represents low expression. E Violin plots 
indicating the differences in these subtypes. F Principal component analysis plots. ****P < 0.0001

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Fig. 2 Difference of prognosis and clinicopathologic features among the inflammation subtypes. A and B Kaplan-Meier overall survival curves 
for patients assigned into inflammation-low, -mid, and -high subtypes in TCGA (A), CGGA, and Rembrandt cohort (B). C Heatmap presenting the 
clinicopathologic features of these subtypes. D 1p19q codeletion and IDH1 mutation frequency among these subtypes
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subtypes. These findings were additionally validated in 
CGGA and the Rembrandt cohort (Fig. 2B).

We further compared the clinicopathologic features 
of the three subtypes. Patients stratified into inflamma-
tion-high subtypes were associated with high mortality, 
unmethylated MGMT promoter status, IDH wild-type 
status, 1p19q non-codeletion status, WHO III grade, 
and astrocytoma histology. Conversely, inflammation-
low subtypes mainly included low mortality, methyl-
ated MGMT promoter status, IDH mutant status, 1p19q 
codeletion status, WHO II grade, and oligodendroglioma 
histology (Fig. 2C and D).

Inflammation‑based subtypes are associated with distinct 
tumor microenvironments (TME)
TME composition has been shown to be significantly 
altered by inflammation, which has a strong impact 
on immune cells in particular. We examined the TME 
compositions among different subtypes. Briefly, the 
immune score shared a gradual decrease from the 
inflammation-high to the inflammation-low subtypes 
(Fig. 3A), whereas tumor purity demonstrated a gradual 
increase (Fig.  3B). These indicated that inflammation 
high was infiltrated with a higher level of immune cells.

Next, the CIBERSORT method was performed to 
determine the immune heterogeneity among these sub-
types. Figure 3C summarizes the landscape of 22 different 
immune cell infiltrations. In detail, patients with inflam-
mation-high subtype exhibited substantially greater levels 
of immunosuppressive cells (M2-type macrophages) and 
resting immune cells (e.g., resting CD4 memory cell and 
resting NK cells) but significantly lower proportions of 
T-cell follicular helper and B-cell plasma (Fig. 3D). Besides, 
most of the immune checkpoint was elevated in the inflam-
mation-high subtype. Conversely, an inverse pattern was 
revealed in the inflammation-low subtype (Fig. 3E). These 
findings illustrated that the immunosuppressive cells, inac-
tivated NK cells, and enhanced expression of an immune 
checkpoint may drive the immunosuppressive microenvi-
ronment of inflammation-high subtype.

Antitumor immunity may be interpreted as seven 
sequential processes collectively referred to as the “can-
cer-immunity cycle” (Additional file  4). We evaluated the 
anticancer immunological function of the seven-step can-
cer-immunity cycle in three subtypes using TIP (a web ser-
vice for determining tumor immunophenotype profiling). 
Although inflammation-high subtype presented the high 

activity of step 1 (antigen release from tumors), step 4 (T 
cells transfer to tumors), and step 5 (immune cells infiltra-
tion into tumors), the great attenuation of step 6 (tumor cell 
detection by T cells), and step 7 (tumor cells apoptosis) was 
observed (Fig.  4A). However, inflammation-high subtype 
was associated with enhanced activity of step 6 and step 7 
but a restrain of step 1, step 4, and step 5 (Fig. 4A). These 
indicated that mitigation of immunosuppressive microenvi-
ronment in inflammation-high subtype and amelioration of 
immune cell infiltration in inflammation-low subtype might 
contribute to good clinical outcomes in LGGs. Besides, 
genes that participated in the negative modulation of the 
immune processes were predominantly upmodulated in 
inflammation-high subtype followed by inflammation-mid 
subtype and low inflammation-low subtype (Fig. 4B).

Moreover, we analyzed the underlying pathways corre-
lated with the inflammation subtypes. GSEA-enrichment 
analysis revealed that inflammation-high subtype had a 
substantially enriched negative modulation of the immune 
pathways, including TGF-β signaling, hypoxia, epithelial-
mesenchymal transition, and angiogenesis (Fig. 4C).

These findings suggested that patients with inflamma-
tion-high subtype are prone to developing an immuno-
suppressive microenvironment that is characterized by 
the up-modulation of immunomodulatory cytokines, 
immune checkpoints expression, and immunosuppres-
sive cell infiltration, which may ultimately contribute to 
the dismal prognosis.

Somatic mutations landscape in inflammation‑high, 
inflammation‑mid, and inflammation‑low subtypes
We discovered that the somatic mutation patterns of 
these subtypes were different. Even though IDH is the 
most common mutation, the relative rates of IDH muta-
tions vary across various subtypes. Inflammation-low 
and inflammation-mid subtypes were found to have an 
increased IDH1 mutation frequency, which accounted 
for 85% and 90% of the total mutations while only 47% 
mutations for inflammation-high subtype (Fig.  5A–C). 
Besides, inflammation-mid subtypes presented the 
highest frequency of TP53 mutations (73%) followed by 
inflammation-high (45%) and inflammation-low sub-
types (15%). Moreover, the tumor mutation burden score 
shared a gradual increase from inflammation-low to 
inflammation-high subtypes (Fig.  5D), while no signifi-
cant differences were observed in terms of microsatellite 
instability (Fig. 5E).

Fig. 3 Inflammation-based subtypes are associated with distinct tumor microenvironment. A and B Violin plots showing the median, quartile, 
and kernel density estimations for each immune score (A) and tumor purity score (B). C Relative proportion of immune infiltration in LGG samples. 
D and E Boxplots representing the differential distribution of immunoreactive, immunosuppressive cells (D) and immune checkpoints (E) in the 
various inflammation subtypes

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Subsequently, we examined the mutation frequency in 
9 major oncogenic pathways in each one of those sub-
types. Our results revealed that most of the oncogenic 
mutated pathways were detected in inflammation-high 
and -mid subtypes, including RTK-RAS, PI3K, TP53, 
Notch, and Hippo pathways (Fig.  5F). Notably, these 
oncogenic mutated pathways were rarely detected in the 
inflammation-low subtype.

Establishment and verification of the inflammation‑related 
prognostic signature
We further created a prognostic model depending on 
inflammation genes. One-hundred thirty-nine of the 
200 inflammation genes were identified as having a 

substantial association with the patients’ OS according 
to the results of the Cox univariate analysis. Figure 6A 
summarized the top ten genes with the most significant 
p-value. As depicted in Fig. 6B, 139 inflammation genes 
identified by Cox univariate analysis were evaluated 
and chosen for predicting the prognostic value of the 
model in the LASSO regression analysis. The develop-
ment of the risk-score model was achieved according to 
the following equation: risk score = (0.0153) × EMP3 
+ (0.0024) × F3 + (0.0118) × TNFAIP6 + (0.0093) × 
ITGB8 + (0.0034) × IFNGR2 + (0.0168) × MSR1 + 
(0.0169) × DCBLD2 + (−0.0013) × ABI1 + (−0.0047) 
× PCDH7 (Fig.  6C). Additionally, we examined the 
relationship between risk score and survival status. 

Fig. 4 Estimation of anticancer immune activity among inflammation subtypes. A Anticancer immune activity of the seven-step cancer-immunity 
cycle. B Heatmap presenting genes expression involved in the negative regulation of the immune processes. C GSEA analysis reveals the underlying 
biological processes correlated with inflammation subtypes
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Fig. 5 Comparison of somatic mutations among different LGG subtypes. A–C Oncoprint visualization of the top 30 most frequently mutated genes 
in inflammation high subtype (A), inflammation media subtype (B), and inflammation low subtype (C). D and E Violin plots presenting the TMB 
score (D) and MSI score (E) of these subtypes. F The mutation frequencies of nine common oncogenic pathways in each of these three subtypes
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As illustrated in Fig.  6D, our findings revealed that in 
the low-risk cohort, the number of alive statuses sub-
stantially elevated in contrast with that of the high-risk 
cohort. The prognostic value regarding the risk model 
was further determined utilizing Kaplan–Meier analy-
sis. Overall, the high-risk score was associated with the 
unfavorable OS and PFS in the TCGA training cohort 
(Fig. 6E), which was additionally verified by the CGGA 
and Rembrandt testing cohort (Fig. 6F).

The inflammation risk signature has significant predictive 
value for prognosis evaluation
We conducted a receiver operating characteristic 
(ROC) curve to estimate the prediction effectiveness of 
the inflammatory risk signature in terms of 1-, 3-, and 
5-year survival rates. Moreover, the 1-, 3-, and 5-year 
areas under the ROC curve (AUC) were 0.893, 0.859, 
and 0.739, respectively, demonstrating a strong predic-
tive significance (Fig.  7A). We also compared the prog-
nostic efficiency of the inflammation risk signature based 
on clinical characteristics in LGG, such as 1p19q status, 
grade, IDH status, gender, MGMT promoter status, age, 
and ATRX status. The results demonstrated that inflam-
mation risk presented the best performance in predicting 
the prognosis compared to other clinical characteristics 
(Fig. 7B).

Multivariate and univariate Cox analyses were sub-
sequently conducted to estimate the independent prog-
nostic significance of inflammation risk signature with 
respect to the OS. As illustrated in Fig. 7C, the findings 
from the univariate analysis illustrated that high inflam-
mation risk score was considerably associated with an 
unfavorable OS. Other parameters related to unfavora-
ble OS included 1p19q status, IDH status, grade, age, and 
MGMT promoter status. Figure 7D depicts the findings 
from multivariate analysis, which illustrated that high 
inflammation risk score exhibited an independent link 
to a considerably unfavorable OS, implying that it could 
independently act as a prognostic predictor for LGG 
patients (Fig. 7D).

Validation of inflammation genes expression pattern 
via scRNA‑seq analysis
To confirm further that the detailed type of cells express-
ing these inflammation genes constituted the risk sig-
nature in the TME, we analyzed LGG scRNA-seq 

utilizing data from GSE70630. A total of 4 cell clusters 
were detected via uniform manifold approximation and 
projection (UMAP), namely AC-like malignant cells, 
monocyte-macrophages, OC-like malignant cells, and 
oligodendrocyte (Fig. 8A). The results showed that ABI1, 
ITGB8, and PCDH7 were predominantly expressed in 
malignant cells, while IFNGR2, MSR1, and EMP3 were 
predominantly expressed in monocyte macrophages 
(Fig.  8B and C). Besides, F3, DCBLD2, and TNFAIP6 
were detected at low level in both non-tumor cells and 
tumor cells.

Discussion
In the present study, we were interested in identify-
ing LGG subtypes according to their inflammatory 
responses. Our results demonstrate that LGG might be 
classified into inflammation-high, -mid, and -low sub-
types with distinct clinicopathologic features, prognos-
tic, and tumor microenvironment. The findings in the 
present study demonstrated that this kind of classifica-
tion was repeatable as well as predictable. In general, the 
inflammation-high subtype presents a dismal progno-
sis with the immunosuppressive microenvironment and 
high frequency of oncogene mutation. In contrast, the 
inflammation-low subtype was associated with the most 
favorable clinical outcomes with the immunoreactive 
microenvironment among the three subtypes. Moreover, 
we develop and validate an inflammation-related prog-
nostic model, which presents strong power for prognosis 
assessment.

Historically, the central nervous system was defined as 
an immune privilege. This understanding was based on 
the presence of tight junctions in the blood-brain bar-
rier and the absence of a classic lymphatic drainage sys-
tem. However, this notion of immune privilege has been 
revised since the discovery of a functional lymphatic sys-
tem in mice along the dural sinuses [18, 19]. Currently, 
it has been established that functional lymphatic ves-
sels exist in the CNS, as well as antigen-presenting cells 
(APCs) of many types, including microglia, macrophages, 
astrocytes, and classic APCs such as dendritic cells 
(DCs). Moreover, in certain brain tumors, the blood-
brain barrier is often damaged, allowing the infiltration 
of multiple immune cell types from the peripheral cir-
culation [20]. Although brain tumors present relatively 
low tumor-infiltrating T cells indicating immunologically 

(See figure on next page.)
Fig. 6 Construction and validation of the inflammation-related prognostic signature. A Univariate cox analysis of 200 inflammation genes 
associated with overall survival. Top ten genes with most significant p-value are presented. B Lasso Cox analysis uncovered nine genes most 
associated with OS. C The coefficient of the nine genes identified by Lasso Cox analysis. D Risk scores distribution, survival status of each patient, 
and heatmaps of prognostic nine-gene risk signature. E and F Kaplan-Meier curves for patients with high- or low-risk scores in TCGA training cohort 
(E), CGGA testing cohort, and Rembrant cohort (F)
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Fig. 6 (See legend on previous page.)
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“cold,” the majority of immune cells are macrophages, 
often comprising up to ~30% of the tumor mass [21, 22]. 
Current studies show that TAMs in glioma are predomi-
nantly of the immunosuppressive M2 subtype and play 
an immunosuppressive role via upregulating the expres-
sion of PD-L1 [23, 24]. Besides, chronic inflammation 
meditated by macrophages M2 is proved to drive glioma 
growth [25]. In our analysis, patients with inflamma-
tion high exhibited substantially elevated levels of mac-
rophages M2, which may account for the high expression 
of immune checkpoint molecular in inflammation-high 
subtype.

The tumor microenvironment performs an instru-
mental function in the occurrence and progression of 
glioma. A glioma TME is comprised of immune cells, 

endothelial cells, tumor cells, and a range of cytokines 
released by the cells. The immune cells found in glioma 
TME include dendritic cells, microglia, natural killer 
cells, myeloid-derived suppressor cells, regulatory T 
cells, T lymphocytes, and macrophages. These cells 
interface with tumor cells and contribute to the regula-
tion of immunological actions inside the TME [26]. In 
the glioma TME, the most multifunctional cells group 
is the glioma-associated microglia and macrophages 
(GAMs) [27]. When exposed to a variety of microen-
vironments, GAMs exhibit high plasticity and may 
undergo polarization into a number of distinct pheno-
types. M1 and M2 are the two phenotypes of activated 
GAMs that have been identified so far. M1 and M2 have 
diametrically opposed functions. Specifically, the M1 

Fig. 7 Prognostic value of the inflammation-related risk signatures in LGG. A ROC curve showing the predictive value of inflammation risk signature 
for 1-, 3-, and 5-year survival rates. B Comparison of predictive value between inflammation risk signature and clinicopathologic features. C and D 
Univariate Cox (C) and multivariate Cox analyses (D). Evaluating the independent prognostic value of the inflammation risk signature in terms of OS
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phenotype possesses antitumor properties, while the 
M2 phenotype possesses immunosuppressive properties 
and produces cytokines such as EGF, IL-1B, IL-6, and 

TGF-B to stimulate the growth, invasion, and migration 
of gliomas by promoting the formation of tumor-related 
blood vessels and tumor metastasis [23, 28–30]. In our 

Fig. 8 scRNA-Seq reveals inflammation genes expression patterns. A UMAP plots showing major cell subsets identified by 10× genomics. B and C 
Violin plots (B) and UMPA (C) plots showing different expression patterns of inflammatory response genes
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study, patients with different inflammation subtypes 
presented distinct tumor microenvironments. Patients 
with inflammation-high subtype have a higher likelihood 
of developing immunosuppressive microenvironment 
that is characterized by the up-modulation of immune 
checkpoints expression, immunosuppressive cytokines, 
and immunosuppressive cell infiltration, which may 
ultimately contribute to the dismal prognosis. Notably, 
patients with inflammation high exhibited substantially 
elevated levels of macrophages M2.

Despite a multiplicity of clinical trials investigating 
immune checkpoint inhibitors, the potential predic-
tive biomarkers are still uncertain in glioma. Recently, 
three studies have focused efforts on in-depth analy-
sis of glioblastoma tissue from patients treated with 
immune checkpoint inhibitors (ICIs) therapy [31–33]. 
The results show increased expression of chemokine 
transcripts, IFNγ-related genes, higher infiltration of 
immune cells, and increased diversity of TCR clones 
among tumor-infiltrating lymphocytes, support-
ing an immunomodulatory effect of the ICIs therapy. 
However, limited by sample size, these finds need 
verification with large sample sizes. In our analysis, 
inflammation-high LGG patients were associated 
with high immune infiltration and may be poten-
tially sensitive to the current ICIs therapy. Neverthe-
less, it should be noted that the association between 
inflammation subtypes and immunotherapies of LGG 
requires further validation in  vitro or in  vivo. Our 
findings should be interpreted with this limitation in 
mind.

It is important to note that gliomas are significantly 
diverse, with several subtypes. A precise approach for 
classifying glioma has been developed as a result of the 
finding of numerous critical genetic markers, the most 
notable of which being IDH mutations and the 1p/19q 
deletion [8, 11, 34–36]. This method has strong prognos-
tic values. Several large randomized studies, including 
the initial retrospective series and successive retrospec-
tive analyses, have shown that 1p/19q deletion is a pow-
erful prognostic and predictive indicator in LGG. Here, 
we compared the predictive efficiency of inflamma-
tion risk signature with 1p/19q deletion, IDH mutation, 
MGMT promoter status, and ATRX status. The results 
demonstrated that inflammation risk presented the best 
performance in predicting the prognosis compared to 
other clinical characteristics.

To conclude, we developed a new glioma classifica-
tion system on the basis of the inflammatory subtype 
of the tumor. This classification produced meaningful 
results in evaluating patients’ prognoses and the tumor 
microenvironment.
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