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Abstract 

Since the discovery of group 2 innate lymphoid cells (ILC2s) in 2010, subsequent studies have revealed their devel-
opmental pathways, mechanisms of activation and regulation, and immunological roles in tissue homeostasis and 
tissue-specific diseases in various organs. Although ILC2s are known to express tissue-specific features depending on 
where they reside, how the surrounding environment affects the functions of ILC2s remains to be fully elucidated. 
Recent histologic analyses revealed that ILC2s resides in specific perivascular regions in peripheral tissues with their 
function being controlled by the surrounding cells via cytokines, lipid mediators, neurotransmitters, and cell–cell 
interactions through surface molecules. This review summarizes the interactions between ILC2s and surrounding 
cells, including epithelial cells, neurons, immune cells, and mesenchymal cells, with the objective of promoting the 
development of novel diagnostic and therapeutic methods for ILC2-related diseases.
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Background
Group 2 innate lymphoid cells (ILC2s) are a subset of 
innate lymphoid cells that express transcription factor 
GATA-binding protein 3 (GATA3) and lack specific line-
age markers [1]. Unlike adaptive lymphocytes, ILC2s do 
not possess antigen-recognition receptors such as the T 

cell antigen receptor or B-cell antigen receptor. Instead 
of antigen-specific responses, ILC2s respond to environ-
mental factors including cytokines, neuropeptides, lipid 
mediators, hormones, and nutrients. In response to these 
inputs, ILC2s produce various cytokines, such as IL-4, 
IL-5, IL-6, IL-9, IL-10, IL-13, GM-CSF, and amphiregulin. 
By producing these cytokines, ILC2s are associated with 
the pathogenesis of various diseases, including parasitic 
infections, allergic diseases, autoimmune diseases, meta-
bolic diseases, and malignant diseases (Fig.  1) [2–10]. 
ILC2s were first discovered in murine adipose tissue 
[2] but are now known to be present in various tissues 
in both humans and mice, for example, lung, intestine, 
brain, heart, liver, skin, and peripheral blood [11–17]. 
ILC2s are generally tissue-resident cells that possess 
tissue-specific functions. Progress in the past several 
years has clarified the factors that regulate the activation, 
suppression, expansion, development, and migration 
of ILC2s. However, how the surrounding environment 
affects tissue-resident ILC2s is not fully understood. This 
review summarizes recent advances in the understand-
ing of mechanisms regulating ILC2s by surrounding 
cells, which would contribute to the development of basic 
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studies on ILC2s and the investigation of new clinical tar-
gets for ILC2-associated disorders.

Development and migration of ILC2s
ILC precursors and ILC2s first arise during fetal devel-
opment, both in humans and mice. They are seeded in 
peripheral tissues and differentiate in  situ to acquire 
tissue-specific profiles [18–20]. Shortly after birth, fetal 
ILC2s are followed by neonatal origin ILC2s, which com-
prise the majority of adult peripheral ILC2 pools accom-
panied by the acquisition of effector repertoires and 
tissue-specific signatures [21, 22].

In adult parabiotic mice, ILC2s were shown to be tis-
sue-resident cells. They are maintained and expanded 
locally both during homeostatic conditions and acute 
helminth infection. However, during the chronic phase 
of infection, a fraction of ILC2s from hematogenous 
sources are recruited to replenish the pool of resident 
ILC2s, leading to the clearance of the infection and tis-
sue healing [23]. In addition to helminth infection, IL-25 
induces inflammatory ILC2s in the small intestines to 
proliferate and traffic to the lymphatics and blood circu-
lation. They reach the peripheral tissues, including the 
lungs, in a sphingosine-1-phosphate-dependent manner 
[24]. Ricardo-Gonzalez et al. showed that the activation 
of local ILC2s by tissue-specific alarmins induces ILC2 
proliferation, lymph node migration, and blood dissemi-
nation, which causes local innate responses to transition 
into systemic type 2 responses [25]. As mentioned above, 
ILC2s are basically tissue-resident cells; however, in 

certain conditions, they migrate from tissue to tissue and 
they turn local inflammation into systemic inflammation.

Recent studies have shown that tissue niches play a 
crucial role in the acquisition of tissue-specific prop-
erties by tissue-resident or migratory ILC2s. Using a 
single-cell atlas of lung ILC2s, Zeith et  al. showed that 
tissue-resident Il18r1+ ILC2 precursors contribute to the 
maintenance and renewal of tissue ILC2s via in situ dif-
ferentiation, suggesting that local niches, rather than ori-
gin or developmental period, might dominantly imprint 
ILC phenotypes in adult tissues [26]. For instance, neu-
ropilin-1 (Nrp1) is a tissue-specific marker of lung ILC2s 
that is induced postnatally and sustained by lung-derived 
transforming growth factor beta-1 (TGFβ1). TGFβ1–
Nrp1 signaling enhances ILC2 function and exacerbates 
bleomycin-induced lung fibrosis through upregulation of 
IL-33 receptor ST2 expression [27]. As described above, 
tissue specificity of ILC2s is acquired through signals 
from the tissue niches where they reside.

Localization of ILC2s
Although ILC2s are present in various peripheral tissues, 
ILC2s are enriched in mucosal organs, such as the skin, 
intestines, and lungs. In these tissues, ILC2s localize right 
below epithelial cells and are activated by IL-33, which is 
released from damaged epithelial cells due to parasites 
or allergens and induces eosinophilic inflammation. In 
addition, IL-25 produced by tuft cells activates ILC2s and 
induces enhanced mucus production [2, 28, 29]. Three-
dimensional imaging technologies have shown that ILC2s 

Fig. 1 ILC2s and its related diseases. Studies with human and mouse revealed that ILC2s reside in various tissues exhibiting tissue-specific features 
and play a pivotal role in maintaining the homeostasis of tissues they reside
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reside in perivascular adventitial cuff spaces, which rep-
resent the outermost layer of blood vessels, in multiple 
sights including the lungs, liver, brain meninges, and 
adipose tissue. ILC2s are localized with dendritic cells, 
regulatory T cells, and adventitial stromal cells (ASCs), a 
mesenchymal fibroblast-like subset expressing IL-33 and 
thymic stromal lymphopoietin (TSLP) [30]. In addition, 
pulmonary neuroendocrine cells (PNECs) reside close to 
ILC2s near airway branch points in the lungs and amplify 
allergic asthma responses by producing calcitonin gene–
related peptide (CGRP) [31]. Single-cell RNA sequencing 
studies have shown that intestinal ILC2s are regulated 
by neuropeptide alpha-calcitonin gene–related peptide 
(α-CGRP) [32]. As described above, tissue-resident ILC2s 
localize with epithelial cells, immune cells, neurons, and 
mesenchymal cells in peripheral tissues. We will explain 
the interaction between ILC2s and these cells below.

Epithelial cells and ILC2s
Epithelial cells in the skin and mucosal tissues, including 
the lungs and intestines, constitute a barrier between the 
external environment and the underlying mesenchyme. 
They also respond to external stimuli and interact with 
immune cells to maintain homeostasis (Fig. 2).

The epithelial cell–derived danger signal media-
tors IL-33, TSLP, and IL-25 are consistently associ-
ated with type 2 immune responses in allergic diseases 
[33]. Genome-wide association studies (GWAS) have 
shown an association between allergic diseases and 

genetic polymorphisms in genes such as TSLP, IL33, 
and IL1RL1, which encode the IL-33 receptor ST2 [34]. 
IL-33 is normally found in the nucleus of epithelial cells. 
When activated or damaged by exposure to parasites or 
allergen-derived proteases, full-length IL-33 is released 
from epithelial cells and rapidly processed into a mature 
active form, which leads to strong ILC2 activation [35]. 
Although studies have reported that structural cells, 
including endothelial cells, fibroblasts, smooth muscle 
cells, and epithelial cells, express IL-33 in various organs, 
bronchial epithelium is reported to be an important 
reservoir of IL-33 in the lungs and expression levels are 
elevated in patients with bronchial asthma [36]. TSLP 
expression is also higher in the airways of patients with 
asthma than in those of healthy controls. TSLP levels 
correlate with Th2 cytokine and chemokine expression 
and disease severity [37, 38]. TSLP alone mildly activates 
ILC2s; however, when administered with IL-33, TSLP 
induces ILC2 corticosteroid resistance by controlling 
phosphorylation of STAT5 [39]. Because corticosteroid 
resistance contributes to uncontrolled severe asthma 
and TSLP upregulates antigen-specific Th2 cell cytokine 
production through its activity on innate immune cells as 
well as dendritic cells, T cells, and B cells, a human mon-
oclonal antibody specific for TSLP has been developed 
[40]. IL-25 is also released from epithelial cells. Allergen 
provocation induces increased expression of IL-25 and its 
receptor in the bronchial mucosa and dermis of patients 
with asthma or atopic dermatitis [41]. In addition, tuft 

Fig. 2 Regulation of ILC2s by epithelial cells. ILC2s reside just below the epithelial cells in mucosal tissues, such as lung, intestine and skin. IL-33, 
IL-25, and TSLP are released from epithelial cell in response to epithelial damage due to invasion of allergen, helminth and pathogen. These alarmins 
activate ILC2s and lead to type 2 inflammation
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cells, a cell type in the epithelium of the small intestines, 
express IL-25 to sustain ILC2 homeostasis in a steady 
state. During helminth infection, IL-25 derived from tuft 
cells induces IL-13 secretion from ILC2s, which leads to 
epithelial remodeling by increasing the number of tuft 
and goblet cells [29]. Moreover, E-cadherin, an adhesion 
protein expressed by epithelial cells that is responsible 
for maintaining the integrity of the epithelium, acts as a 
ligand for KLRG1 and suppresses ILC2 function to avoid 
excessive ILC2 activation [17]. In inflamed skin lesions of 
patients with atopic dermatitis, cleavage of E-cadherin 
might lead to the discontinuation of the inhibitory signal 
from ILC2s.

Neurons and ILC2s
The immune and nervous systems can communicate 
using common molecular signaling cues in various organ 
systems. Recent studies have revealed that ILC2s express 
receptors for several neurotransmitters, such as vasoac-
tive intestinal polypeptide (VIP), neuromedin U (NMU), 
CGRP, and norepinephrine (NE). ILC2s are directly acti-
vated and regulated by these neurotransmitters produced 
by various peripheral neurons (Fig. 3).

The peripheral nervous system is composed of the 
somatic nervous system, which includes motor and sen-
sory neurons, and the autonomic nervous system, which 
includes sympathetic and parasympathetic neurons. 
Sensory, sympathetic, and parasympathetic neurons are 
reported to regulate ILC2s independently from cytokine 
stimuli.

Sensory neurons transmit sensory information about 
the body and internal organs to the central nervous sys-
tem. The lungs have a dense network of nociceptors 
expressing sensory neurons, which produce VIP and 
exacerbate asthma symptoms by activating T cells and 
ILC2s via the VIP–VIP receptor type 2 axis. IL-5 pro-
duced by activated ILC2s enhances VIP production, cre-
ating a positive feedback loop between sensory neurons 
and ILC2s [42]. Sensory neurons in the small intestines 
also produce VIP when stimulated by nutrient intake 
and central circadian rhythms, leading to the induction 
of IL-5 production by ILC2s and contributing to basal 
eosinophilopoiesis and eosinophil accumulation in tis-
sues [43].

Sympathetic neurons control the fight-or-flight 
response in stressed, dangerous, or physically active 
situations. They increase heart rate and promote vaso-
constriction to activate physical activity while suppress-
ing intestinal motility and intestinal tract secretion. The 
sympathetic nervous system includes adrenergic neurons 
that produce catecholamines, i.e., epinephrine and NE. 
Catecholamines exert their effect via two classes of adr-
energic receptors α (α1, α2) and β (β1, β2, and β3). ILC2s 
express the β2-adrenergic receptor (β2AR) and colocal-
ize with adrenergic neurons in the intestines. Moriyama 
et  al. reported that the β2AR pathway is a cell-intrinsic 
negative regulator of ILC2 responses via inhibition of cell 
proliferation and effector function [44].

Parasympathetic neurons are responsible for stimu-
lation of rest-and-digest or feed-and-breed activities 

Fig. 3 Regulation of ILC2s by nervous system. Sensory, sympathetic and parasympathetic neurons regulate the function of ILC2 by various 
neurotransmitters. Inhaled allergen or food intake stimulates sensory neurons to produce VIP in the lung and intestine respectively. VIP induces IL-5 
production by ILC2s, which in turn enhances VIP production. During helminth infection, NE from sympathetic neurons inhibit cell proliferations and 
cytokine production in both intestine and lung ILC2s. NMU from parasympathetic neuron enhances the proliferation and cytokine secretion by 
ILC2s, while CGRP suppress the proliferation and IL-13 production from ILC2s
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when the body is at rest. They play an antagonistic 
role to sympathetic neurons. They reduce heart rate, 
relax blood vessels, and activate digestive activity. The 
parasympathetic nervous system mainly uses acetyl-
choline as its neurotransmitter, which is produced by 
cholinergic neurons. NMU is produced by cholinergic 
neurons and signals through its receptors neuromedin 
U receptor 1 (NMUR1) and NMUR2 [45]. Single-cell 
RNA sequencing and genome-wide transcriptional 
profiling have revealed that ILC2s selectively express 
Nmur1. ILC2s in the murine gastrointestinal tract colo-
calize with cholinergic neurons that express NMU. 
NMU–NMU1 signaling induces cell activation, prolif-
eration, and secretion of the type 2 cytokines IL-5, IL-9, 
and IL-13 from ILC2s. Worm products and alarmins 
directly stimulates mucosal neurons to induce NMU 
and lead to accelerated expulsion of Nippostrongy-
lus brasiliensis. Lung ILC2s express NUMR1 in the 
steady state and after IL-25 stimulation; in  vivo co-
administration of NMU with IL-25 strongly amplifies 
allergic inflammation [46–48]. Of note, NMU induces 
both smooth muscle contraction [49], which exacer-
bates asthma, and ILC2-driven inflammation. On the 
other hand, CGRP released from parasympathetic neu-
rons suppresses the proliferation of ILC2s and IL-13 

production by ILC2s and attenuates type 2 inflamma-
tion in the lungs and intestines [32, 50, 51].

In summary, the nervous system appears to have two 
mechanisms to rapidly activate or repress these innate 
immune cells in order to maintain tissue homeostasis 
and protect the host against diverse inflammatory stim-
uli. These findings highlight the importance of neuro–
immune crosstalk at mucosal surfaces. The investigation 
of neuroimmune interactions with ILC2s might lead 
to greater understanding of the mechanisms of asthma 
exacerbation by non-antigenic factors such as air pollut-
ants, cold exposure, and psychological stress.

Immune cells and ILC2s
ILC2s interact with various immune cells via cell–cell 
contact or communication via soluble factors such 
as cytokines, lipid mediators, and hormones (Fig.  4). 
ILC2s colocalize with regulatory T  (Treg) cells,  CD4+ T 
helper type 2 (Th2) cells, and dendritic cells (DCs) in the 
perivascular adventitial cuff of peripheral tissues.

ILC2s drive the initiation of type 2 innate immune 
responses, leading to the activation of the adaptive 
immune system driven by Th2 cells.  CD4+T cells pro-
vide IL-2, which promotes ILC2 proliferation and IL-13 
production. ILC2s, in turn, influence the differentiation 

Fig. 4 Regulation of ILC2s by immune cells. ILC2s interact with various immune cells by cytokines, lipid mediators, and cell–cell contact. ILC2s and 
Th2 cells compound positive feedback loop driving innate and adaptive immune responses in allergic inflammation and anti-helminth immunity. In 
visceral adipose tissue, IL-5 and IL-13 produced from ILC2s promote eosinophils and M2 macrophages implicated in metabolic homeostasis
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of naïve  CD4+ T cells into a Th2 phenotype in a con-
tact-dependent manner [52]. Moreover, activated ILC2s 
upregulate the expression of OX40 ligand and pro-
grammed death ligand 1, leading to the activation of Th2 
cells by upregulating GATA3 expression and cytokine 
production [53, 54]. Activated Th2 cells produce IL-4 and 
IL-9, which contribute to ILC2 activation. This positive 
feedback loop drives both innate and adaptive immune 
responses. In addition to Th2 cells, basophil- and eosin-
ophil-derived IL-4 enhances ILC2-derived cytokine and 
chemokine expression, leading to type 2 inflammation 
[55, 56]. IL-5 produced by ILC2s enhances the prolifera-
tion, survival, and recruitment of eosinophils [43]. Eosin-
ophils, in turn, produce IL-4 to stimulate ILC2s, thereby 
mediating the crosstalk between eosinophils and ILC2s.

Treg cells have the capacity to mediate suppression of 
a variety of immune cells and exert anti-inflammatory 
effects. In addition to the production of suppressive 
cytokines TGF-β and IL-10, Treg cells suppress ILC2s by 
inducible T cell costimulator (ICOS)–ICOS ligand inter-
action [57]. IL-33 induces mast cells to secrete a variety of 
inflammatory mediators, including IL-2. IL-2 secreted by 
mast cells promotes an increase in the number of IL-10–
producing Treg cells and suppresses IL-33–induced air-
way eosinophilia, constituting an anti-inflammatory 
negative feedback system [58]. On the other hand, mast 
cell–derived prostaglandin D2 activates ILC2s via its 
receptor, chemoattractant receptor–homologous mol-
ecule expressed on TH2 cells (CRTH2), and mediates 
strong proallergic inflammatory responses [59].

DCs are a type of antigen-presenting cell. They play 
an essential role in promoting the adaptive immune 
response. ILC2-derived IL-13 promotes DC migration 
into draining lymph nodes, where DCs prime naïve T 

cells to differentiate into Th2 cells [60]. ILC2-derived 
IL-13 also induces the production of CCL17 by DCs, 
which promotes the recruitment of  CCR4+ memory Th2 
cells [61].

In addition, ILC2s interact with macrophages. In the 
context of polarized type 2 immune responses, mac-
rophages assume a distinct state of alternative activation 
into M2 macrophages, which have critical functions in 
allergic inflammation, helminth infection, and mainte-
nance of metabolic homeostasis. Type 2 cytokines, espe-
cially IL-13, produced by activated ILC2s promote M2 
polarization, resulting in protective immunity in a cer-
ebral malaria model and helminth infection, or induce 
allergic inflammation in fungal infection [62–64]. More-
over, M2 macrophages in visceral adipose tissue (VAT) 
play an important role in glucose and fat metabolism. 
VAT-resident ILC2s are the major source of IL-5 and 
IL-13; they promote the accumulation of eosinophils and 
M2 macrophages. These cells are required for protection 
from increased adiposity and insulin resistance in the 
context of a high-fat diet [65].

Mesenchymal cells and ILC2s
ASCs, a platelet derived growth factor receptor alpha 
(PDGFRα) low expressing fibroblast-like stromal cells, 
produces IL-33 and TSLP to support ILC2s in the periph-
eral microenvironment in various tissues (Fig. 5). ILC2s, 
in turn, promote ASC expansion and IL-33 production 
after helminth infection. Single-cell RNA sequencing has 
revealed that ASCs express high levels of collagens and 
cytokines and that they are associated with extracellular 
matrix remodeling and immune responses [30]. In adi-
pose tissue, white adipose tissue–resident multipotent 
stromal cells (WAT-MSCs) act as a reservoir of IL-33 to 

Fig. 5 Regulation of ILC2s by mesenchymal cells. ILC2s localize with fibroblast-like mesenchymal cells in perivascular regions. Mesenchymal 
cells produce IL-33 and TSLP to support ILC2s, and ILC2s promote mesenchymal cell expansion and IL-33 production during helminth infection. 
Mesenchymal cells not only activate ILC2s but also regulate IL-10 production via Semaphorine6D-PlexinA1 manner
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sustain ILC2s. WAT-MSCs also support the proliferation 
and activation of ILC2s in an ICAM-1–LFA-1 manner.

A recent study revealed that lung ASCs regulate IL-10 
production in ILC2s via the semaphorin 6D (Sema6D)–
plexin A1 axis [66]. Semaphorins, which are axon 
guidance molecules, were originally identified during 
neuronal development. They have various effects on angi-
ogenesis, tumor growth, bone homeostasis, and immune 
responses [67–71]. Sema6D-expressing ASCs suppress 
IL-10 production by ILC2s in vitro. Deletion of Sema6D 
ameliorates acute lung inflammation caused by IL-33 and 
Alternaria alternata.

Conclusions
Progress in the past several years has clarified that ILC2s 
are highly dynamic cells that can migrate from tissue to 
tissue and adapt their effector functions depending on 
the environment in which they reside. As mentioned ear-
lier, in contrast to T cells and B cells, ILC2s lack antigen-
specific receptors. Instead, ILC2s are directly regulated 
by various mediators including cytokines, lipid media-
tors, neurotransmitters, and cell–cell contact. Moreover, 
as ILC2s are tissue-resident cells, such mediators in the 
local microenvironment have a significant effect on the 
function, localization, and phenotype of ILC2s. In this 
review, we summarized the current knowledge regarding 
the mechanisms that regulate ILC2s from the perspective 
of the cells in the surrounding environment.

Understanding of how ILC2s are regulated highlights 
the therapeutic importance of targeting the surrounding 
mediators. For example, along with Th2 cells, ILC2s are a 
well-known component of an immune cell network that 
contributes to the pathological state of asthma. Biolog-
ics targeting IgE, IL-4, IL-5, IL-13, and TSLP are used for 
uncontrolled severe asthma; their targets are all media-
tors produced by cells in the microenvironment of ILC2s. 
Blood eosinophil count, fractional exhaled nitric oxide 
(FeNO), and blood IgE titer are used as diagnostic bio-
markers for severe asthma [72–74]. Among these bio-
markers, blood eosinophil count and FeNO are reported 
to be useful for predicting the efficacy of biologics in 
patients with severe asthma [75–78]. ILC2s produce 
IL-5 and enhance the proliferation, survival, and recruit-
ment of eosinophils, which can be monitored by blood 
eosinophil count. However, human blood ILC2 count it 
is usually not measured clinically. A basic science study 
has shown that patients with asthma have more blood 
ILC2s which produce more IL-5 and IL-13 than healthy 
controls [79], indicating that the evaluation of blood 
ILC2 in patients with asthma might be clinically useful. 
Clinical application of ILC2 measurement in humans is 
a task for the future. In addition to surrounding media-
tors of ILC2s, regulatory functions of ILC2 might be the 

key to treating allergic diseases. It has been reported that 
allergen-specific immunotherapy restores the ability of 
ILC2s to produce IL-10, and IL-10–producing ILC2s play 
a critical role in the induction of tolerance to aeroaller-
gens [80]. Mesenchymal cells, which regulate IL-10 pro-
duction by ILC2s, might be a potential treatment target 
in allergic diseases.

The location of ILC2s differs between humans and 
mice. Moreover, ILC2s have different cytokine produc-
tion profiles, receptor expression, and signaling path-
ways among species. Although mouse studies and human 
studies complement each other, we have to carefully 
interpret these differences.

ILC2s have been identified to be involved in many dis-
eases related to excessive activation or dysfunction of 
tissue-repairing and maintaining tissue-homeostatic bal-
ance. Further clarification of the mechanisms by which 
ILC2s regulate the immune system will certainly shed 
light on the development of novel therapeutic approaches 
for these diseases.
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