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Abstract

with ASC therapy.

Mesenchymal stem cells (MSCs) may be effective in treating connective tissue disease and associated organ damage,
leveraging their anti-inflammatory and immunoregulatory effects. Moreover, MSCs may possess the ability to produce
antiapoptotic, proliferative, growth, angiogenic, and antifibrotic factors. Among MSCs, adipose-derived MSCs (ASCs)
stand out for their relative ease of harvesting and abundance. Additionally, studies have indicated that compared

with bone marrow-derived MSCs, ASCs have superior immunomodulatory, proangiogenic, antiapoptotic, and antioxi-
dative properties. However, relatively few reviews have focused on the efficacy of ASC therapy in treating connective
tissue disease (CTD) and interstitial lung disease (ILD). Therefore, this review aims to evaluate evidence from preclini-
cal studies that investigate the effectiveness of MSC therapy, specifically ASC therapy, in managing CTD and ILD.
Moreover, we explore the outcomes of documented clinical trials. We also introduce an innovative approach involv-
ing the utilization of pharmacologically primed ASCs in the CTD model to address the current challenges associated
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Background

Recent advances have transformed the treatment land-
scape of connective tissue disease (CTD), resulting in
the availability of various treatment options. For exam-
ple, the treatment of rheumatoid arthritis (RA) now
focuses on achieving remission by combining biological
disease-modifying antirheumatic drugs (DMARDs) and
targeted synthetic DMARDs with conventional synthetic
DMARD:s, including methotrexate [1]. For systemic lupus
erythematosus (SLE), conventional immunosuppressants,
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including cyclophosphamide (CYC), azathioprine, and
cyclosporine, alongside novel immunosuppressants such
as tacrolimus and mycophenolate mofetil (MMF), have
demonstrated efficacy in treating lupus nephritis and
organ damage associated with SLE [2]. Belimumab—a
monoclonal antibody targeting soluble B lymphocyte
stimulator—is also effective in suppressing disease activ-
ity in SLE and serves as a maintenance therapy for this
disease [3]. Advancements in novel immunosuppressants
and biological products have improved disease control
and CTD prognosis. However, challenges such as the
risks of side effects and opportunistic infection owing to
immunosuppression persist. Furthermore, effective treat-
ments for many types of CTD, such as systemic sclerosis
(SSc), remain few.

CTD is associated with various types of organ dam-
age, with interstitial lung disease (ILD) being particu-
larly important due to its significant impact on patient
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prognosis. Progressive ILD associated with dermato-
myositis/polymyositis, progressive ILD linked to SSc,
acute exacerbation of ILD correlated with RA, and
comparable conditions present therapeutic challenges
and are associated with a poor prognosis [4]. Treat-
ment for these progressive CTD-ILDs typically requires
a combination of corticosteroids and immunosuppres-
sive agents, including calcineurin inhibitors, CYC, and
MME, among others [4, 5]. However, numerous cases
continue to progress despite the advances, leading to
respiratory failure and, ultimately, mortality. Addition-
ally, the prolonged and high-dose utilization of these
immunosuppressants raises concerns regarding infec-
tions and potential side effects. Recently, pirfenidone
and nintedanib have been employed to inhibit fibrotic
progression in ILD; however, their efficacy remains
limited [5, 6]. Therefore, developing more effective and
safer treatments for refractory CTD and complicating
ILD, considering their efficacy and safety, is crucial.

Mesenchymal stem cells (MSCs) are being explored
extensively in the field of regenerative medicine, given
their ability to differentiate into various mesenchymal
cells, including osteoblasts, adipocytes, myocytes, and
chondrocytes [7, 8]. Moreover, MSCs exhibit antiapop-
totic, anti-inflammatory, and antifibrotic effects, along
with their ability to modulate the immune response and
modify the microenvironment at the engraftment site
[7, 9-11]. Thus, the current focus involves investigat-
ing the efficacy of MSC therapy for inflammatory and
autoimmune diseases. Additionally, MSCs can serve as
allografts owing to their low expression levels of human
leukocyte antigen (HLA) class I and II [12, 13], and they
are well-tolerated when administered intravenously
[9]. While research on MSCs has primarily focused on
those harvested from the bone marrow, recent studies
indicate that these cells can also be harvested from var-
ious other tissues, including the cord blood, placenta,
and adipose tissue. Adipose tissue specifically con-
tains substantial numbers of MSCs, with subcutaneous
adipose tissue being easily accessible. Consequently,
adipose-derived mesenchymal stem cells (ASCs) are
currently gaining much attention.

Therefore, this review aims to examine evidence
from preclinical studies that investigated the efficacy
of MSC therapy, particularly focusing on ASC therapy,
in managing CTD and ILD. Additionally, we explored
the findings of documented clinical trials. Furthermore,
this review aims to introduce an innovative approach
involving the use of pharmacologically primed ASCs in
the CTD model. The study findings could offer a poten-
tial strategy to prevent current challenges associated
with ASC therapy.
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Immunomodulatory effects of MSCs

MSCs modulate the activities of various immune cells,
including lymphocytes, monocytes, and neutrocytes.
Furthermore, MSCs inhibit cyclin D2 expression, lead-
ing to cell cycle arrest at the GO/G1 phase [14]. They
also inhibit the proliferation of CD4" and CD8" T cells,
including memory and naive T cells [15]. The effect on
T cells is mediated by specific factors, namely trans-
forming growth factor-p1 (TGEF-P1), prostaglandin E2
(PGE2), and indoleamine 2,3 dioxygenase, which are gen-
erated by MSCs [16]. Other factors have been observed
to mediate the effect of MSCs on T cells. These include
IL-6, hepatocyte growth factor (HGF), heme oxygenase 1,
HLA-GS5, interleukin 1 receptor antagonist, and soluble
TNF-receptor 1 [17-20]. MSCs induce anergy by inhibit-
ing proinflammatory cytokines, including IFN-y, TNF-q,
and IL-17, while simultaneously elevating the expression
of IL-10 and IL-4 [16, 21, 22]. In addition, inducible
nitric oxide synthase, which triggers differentiation into
Th2-type T cells and regulatory T cells (Tregs), exhibits
cytotoxic effects on T cells and natural killer (NK) cells.
Additionally, MSCs suppress the function of Th17-type T
cells through cell contact via the programmed death-1/
programmed death ligand-1 pathway [23]. Soluble factors
produced by MSCs, including PGE2 and TGEF-f1, influ-
ence the proliferative capacity and/or cytotoxicity of NK
cells through direct and indirect mechanisms [24]. The
TNF-a-stimulated gene 6 protein (TSG-6), secreted by
MSCs, exerts anti-inflammatory effects in macrophages
by attenuating TLR2/NF-«kB signaling [25].

MSCs inhibit the differentiation of T cell-dependent
B cells into plasma cells by suppressing the activity of
CD4+ T cells. Furthermore, MSCs directly inhibit the
proliferation, differentiation into plasma cells, and chem-
otaxis [26], consequently exerting an indirect suppres-
sion on T cell activation [27]. In addition, MSCs inhibit
the differentiation, maturation, and activity of dendritic
cells while inducing differentiation into M2 macrophages
[28-30]. PGE2 and IL-6—produced by MSCs—induce
the secretion of IL-10 by M2 macrophages, consequently
inhibiting the neutrophil oxidative burst [31].

The trophic effect of MSCs is predominantly attrib-
uted to antiapoptotic, proliferative, growth, and angio-
genic factors. Besides their antiapoptotic and angiogenic
effects, MSCs prevent fibrosis by promoting the secretion
of HFG and matrix metalloproteinases (MMPs) while
concurrently downregulating collagen synthesis [32].
Exosomes released by MSCs encompass proteins, mes-
senger RNA (mRNA), and micro RNA, crucial factors
that significantly contribute to the trophic effect of MSCs
[32].

The anti-inflammatory and immunoregulatory effects
of MSCs and their capacity to produce antiapoptotic,
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proliferative, growth, angiogenic, and antifibrotic factors
such as MMPs and HGF render MSC therapy an appeal-
ing treatment option for CTD and its associated organ
involvement (Fig 1).

Advantages of ASCs compared to other types

of MSCs, including bone marrow-derived MSCs

and umbilical cord blood-derived MSCs

MSCs exhibit remarkable abilities for self-replication
and self-renewal. As adult stem cells are distributed
throughout the body, MSCs can be harvested from vari-
ous sources, including the bone marrow, cord blood, adi-
pose tissue, and placenta. Thus, the utilization of MSCs
is associated with fewer ethical concerns compared to
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that of embryonic stem cells. In addition, compared
to induced pluripotent stem cells, MSCs are consid-
ered safer to use since there is no requirement for gene
transfers.

ASCs are fibroblast-like cells resembling MSCs har-
vested from other tissues, with differences in cell surface
characteristics and gene expression [33]. However, the
physiological significance of these differences remains
unclear. Bone marrow-derived MSCs (BM-MSCs) con-
stitute only 0.001-0.01% of all nucleated cells [34].
Additionally, studies suggest that the proliferation rate
of harvested MSCs tends to decelerate with aging [35].
Therefore, harvesting a sufficient quantity of MSCs
for therapy from the bone marrow poses a challenge.

/"ﬁ

Prevention of connective
tissue disease progression and
the complications (ILD, etc...)

Anti-inflammatory and
immunomodulatory
effects

B cell

Fig. 1 Schematic overview of anti-inflammatory, immunoregulatory effects, and other beneficial factors for preventing disease progression

of connective tissue diseases and complications. MSCs exert a multifaceted suppressive effect on various immune cells implicated in CTDs. By
inhibiting the proliferation and effector functions of CD4+ and CD8+ T cells, including memory and naive subsets, MSCs wield their influence
through specific factors such as TGF-31, PGE2, HO-1, INOS, sHLA-GS5, and IDO. This induction of T cell anergy, suppression of proinflammatory
cytokines, and elevation of anti-inflammatory cytokines collectively contribute to immune regulation. Furthermore, MSCs modulate the function
of regulatory T cells, fostering their differentiation alongside Th2-type T cells, thus further dampening immune responses. Not only do MSCs
hinder the differentiation, maturation, and function of dendritic cells, but they also steer the polarization of M2 macrophages, inducing

an anti-inflammatory milieu. Through the secretion of soluble factors such as IDO1, PGE2, sSHLA-G5, HO-1, and TSG-6, MSCs exert influence

on the activity of NK cells and macrophages, enhancing their anti-inflammatory properties. PGE2 and IL-6 from MSCs prompt M2 macrophages

to release IL-10, which, in turn, suppresses neutrophil oxidative burst. MSCs further impede CD4+ T cell activity, thwarting T cell-driven B cell
differentiation into plasma cells while directly curtailing plasma cell functions. Moreover, through the secretion of HGF and matrix MMPs,

along with the downregulation of collagen synthesis, MSCs impede fibrosis. Their trophic effects are significantly augmented by the encapsulation
of various bioactive molecules within exosomes released by MSCs. In summary, the collective anti-inflammatory, immunoregulatory, and trophic
actions of MSCs position them as highly promising therapeutic candidates for CTDs and their associated complications. MSCs mesenchymal stem
cells, CTDs connective tissue diseases, MMPs matrix metalloproteinases, NK natural killer, IDO indoleamine 2,3 dioxygenase, PGE2 prostaglandin
E2, TSG-6 TNF-a-stimulated gene 6 protein, sHLA-G5 soluble human leukocyte antigen G5, HO-1 heme oxygenase 1, TGF-31 transforming growth
factor-B1, IL-6 interleukin-6, INOS inducible nitric oxide synthase, HGF hepatocyte growth factor, ILD interstitial lung disease. Solid line indicates

promotion, dotted line indicates suppression
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Conversely, the number of ASCs that can be harvested
from 1 g of adipose tissue (5x10° cells/g) is 500 times
greater than that of BM-MSCs for the equivalent amount
of the bone marrow [34]. Additionally, ASCs exhibit a
faster proliferation rate than BM-MSCs. Therefore, har-
vesting the required number of ASCs is relatively easy.
Regarding immunomodulatory effects, ASCs surpass
other types of MSCs, including BM-MSCs, in suppress-
ing the proliferation of T cells, inhibiting the activation
and immunoglobulin production of B cells, and suppress-
ing monocyte differentiation into mature dendritic cells
[36—40]. Furthermore, ASCs exhibit greater potency than
other MSCs based on their proangiogenic, antiapoptotic,
and antioxidative effects [41-43]. Collectively, these find-
ings indicate that ASCs may be more effective in sup-
pressing immune response compared to other types of
MSCs, including BM-MSCs.

While both ASCs and umbilical cord blood-derived
MSCs (UC-MSCs) exhibit significant immunomodu-
latory properties, current literature delineates several
distinct advantages of ASCs over UC-MSCs. Firstly,
ASCs are sourced from the adipose tissue, which is not
only more abundant but also more readily accessible
than the umbilical cord blood, where availability may be
constrained [44—46]. Secondly, ASCs display enhanced
multipotency and differentiation potential. Empirical
evidence suggests that ASCs possess a superior ability
to differentiate into adipocytes, osteoblasts, and neu-
ronal cells, thus offering broader therapeutic applica-
tions than UC-MSCs [46, 47]. Thirdly, ASCs demonstrate
more potent immunomodulatory effects than UC-MSCs.
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Comparative studies indicate that ASCs may have a more
pronounced cytokine secretion profile, significantly
impacting immune responses [45, 46]. Fourthly, analyses
of proliferation and anti-apoptotic capacities revealed
no significant differences between ASCs and UC-MSCs,
indicating that both cell types exhibit comparable growth
and survival capabilities [46]. In summary, the advan-
tages of ASCs over UC-MSCs, particularly their more
accessible source, enhanced multipotency, differentiation
potential, and stronger immunomodulatory effects, while
maintaining comparable proliferative and anti-apoptotic
abilities, position them as preferable candidates for appli-
cations in tissue engineering and regenerative medicine.

Table 1 shows a comparison of characteristics among
ASCs, BM-MSCs, and UC-MSCs.

MSC/AdSC therapy for preclinical models

of connective tissue and interstitial lung diseases
Rheumatoid arthritis model

Studies using the collagen type II-induced arthritis model
reported conflicting results. While some studies showed
that the systemic administration of MSCs improved
arthritis-associated  inflammation [48-51], others
reported its ineffectiveness or observed worsening of
symptoms [52, 53]. The efficacy of MSC therapy depends
on factors, including the route, frequency, and timing of
administration. Based on the findings of these previous
studies, MSC transplantation should precede collagen
induction, with short intervals between each administra-
tion. Studies reporting improvements after MSC therapy
in the collagen type IlI-induced arthritis model found

Table 1 Comparison of the characteristics between ASCs, BM-MSCs, and UC-MSCs

Characteristic ASCs

BM-MSCs

UC-MSCs

Source Adipose tissue

Collection method Liposuction

Invasiveness of collection Less invasive

Cell yield
Isolation procedure Enzymatic digestion
Proliferation rate

Differentiation potential High adipogenic; moderate in other

lineages

Immunomodulatory effects  High; includes cytokine secretion, T cell

and B cell modulation

Anti-inflammatory effects High; includes suppression of pro-

inflammatory cytokines

High; includes secretion of VEGF, FGF,
etc.

Angiogenic effects

Anti-apoptotic effects
etc.

Bone marrow

Bone marrow aspiration

More invasive

High Low

Density gradient centrifugation
High Low

High osteogenic; moderate in other
lineages

Moderate; less potent than ASCs
Moderate; less potent than ASCs

Moderate; less potent than ASCs

High; includes secretion of Bcl-2, Bcl-xL, Moderate; less potent than ASCs

Umbilical cord

Non-invasive collection at birth

Less invasive

Variable, generally lower than ASCs
Typical density gradient centrifugation

Moderate, typically lower than ASCs
but higher than BM-MSCs

Broad, less lineage-specific than ASCs
or BM-MSCs

Similar to or less than ASCs

Similar to ASCs, variable potency

Similar to ASCs, variable

Similar to or less than ASCs

ASCs adipose-derived mesenchymal stem cells, BM-MSCs bone marrow derived mesenchymal stem cells, UC-MSCs umbilical cord blood-derived mesenchymal stem
cells, VGEF vascular endothelial growth factor, FGF fibroblast growth factor, Bcl-2 B-cell lymphoma-2, Bcl-xL B cell ymphoma like X, long variant
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a reduced incidence of arthritis, lower disease activ-
ity score (DAS), an improved balance between pro- and
anti-inflammatory cytokines, and reduced pathological
scores reflecting the degree of joint destruction. Regard-
ing ASCs, the systemic administration of human ASCs
in DBA/1 mice induced with collagen-induced arthri-
tis notably alleviated arthritis severity. This therapeutic
effect originated from the suppression of two pivotal dis-
ease components: the Thl-driven autoimmune response
and the associated inflammatory reaction [50]. Ueyama
et al. reported reduced intra-articular inflammation and
significant cartilage regeneration in SKG mice through
the local injection of single-cell mouse ADSCs and three-
dimensionally cultured ADSC spheroids [51].

Systemic lupus erythematosus model

The therapeutic effectiveness of MSCs in the SLE mouse
model shows variability, influenced by factors such as
the mouse strain and origin or condition of the MSCs.
Upon transplantation of BM-MSCs into MRL/Ipr mice, a
decrease in serum levels of anti-ds-DNA antibodies, anti-
nuclear antibodies, and immunoglobulins was observed.
Concurrently, kidney function improved, complement
3 levels decreased, and glomerular IgG deposition less-
ened [54, 55]. Conversely, the systemic administration of
BM-MSCs into NZB/W F1 mice was reported ineffec-
tive and, in some cases, exacerbating the disease [56, 57].
Gu et al. utilized MRL/Ipr and NZB/W F1 mouse mod-
els, demonstrating that BM-MSCs derived from healthy
young and diseased mice ameliorated SLE-like disease
while reducing T and B lymphocyte levels in the spleen.
However, BM-MSCs derived from old NZB/W F1 mice
did not reduce spleen weight, IgG deposition, kidney dis-
ease, or inflammation in the renal interstitium [58]. In
contrast to BM-MSCs, Gu et al. utilized umbilical cord
blood-derived MSCs (UC-MSCs) in MRL/Ipr mice. They
demonstrated a dose-dependent improvement in lupus
nephritis-associated [59]. Chang et al., using NZB/W F1
mice, demonstrated that the transplantation of human
UC-MSCs significantly delayed the onset of proteinu-
ria, reduced serum anti-ds-DNA antibody levels, miti-
gated renal dysfunction, and prolonged mouse survival
[60]. Zhang et al. also reported marked improvement
in nephritis in MRL/lpr mice following weekly systemic
administration of ASCs at a dose of 1x10° cells for eight
consecutive weeks. They observed a substantial decrease
in Th17 cells within the spleen and a significant increase
in Treg cells [61]. Choi et al. also reported that long-
term repeated administration of human ASCs improved
SLE symptoms in NZB/W F1 mice [62]. Mice-adminis-
tered ASCs exhibited a higher survival rate than those
in the control group, demonstrating improvements in
pathological and serological abnormalities, enhanced
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immune functions, and reduced proteinuria incidence.
This administration also resulted in a notable decrease
in serum anti-ds-DNA antibody and urea nitrogen lev-
els, alongside increased serum granulocyte—macrophage
colony-stimulating factor, IL-4, and IL-10. Furthermore,
a significant rise in Treg cell proportion was observed in
the spleen of ASC-administered mice.

Systemic sclerosis model

In a hypochlorous acid (HOCI)-induced SSc mouse
model, characterized by induced fibrosis in the skin and
lung through HOC], a systemic administration of 2.5x10°
BM-MSCs was conducted thrice [63]. The result showed
that BM-MSC administration reduced the deposition
of all collagen in the skin and lung tissues, and it down-
regulated the expression of aSMA and TGF-f1 mRNAs.
Additionally, the level of anti-Scl-70 antibodies in the
serum decreased, alongside a reduction in macrophage
infiltration and T cells in the skin. The treatment also
led to an improvement in tissue remodeling. Moreover,
BM-MSCs did not accumulate in the skin, and they were
cleared from the lungs within several days. Similar results
were observed in allotransplantation, xenotransplanta-
tion, and syngeneic transplantation. The authors also
compared the treatment effects of human BM-MSCs and
ASCs in HOCI-SSc mice, revealing that ASCs were more
effective in suppressing dermal thickening. Furthermore,
ASCs significantly downregulated mRNA expression for
inflammatory cytokines and factors associated with tis-
sue remodeling in the skin and lung tissues compared
to BM-MSCs [64]. The subcutaneous administration of
autologous ASCs improved dermal fibrosis in the bleo-
mycin-induced skin fibrosis mouse model [65]. Further-
more, intravenous administration of allogeneic ASCs
attenuated skin fibrosis in the bleomycin-induced sclero-
derma and Scl-cGVHD mouse models [66, 67].

Interstitial lung disease model

An ILD model utilizing BLM-induced lung fibrosis
has been employed to evaluate the efficacy of MSCs. A
review consolidating 36 preclinical trials of MSC therapy
for BLM-induced pulmonary fibrosis models has been
published [68]. In these studies, the therapy consistently
demonstrated a reduction in various aspects of BLM-
induced pulmonary damage, including tissue inflam-
mation, inflammatory cell infiltration, inflammatory
cytokine expression, extracellular matrix production,
and collagen deposition. This collectively demonstrated
an improvement in lung fibrosis scores. Several studies
have highlighted the effectiveness of intraperitoneally or
intravenously administered ASCs and condition medium
from ASCs in inhibiting pulmonary fibrosis in BLM-
induced ILD mice [69-72].
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Specific animal models for ILD associated with CTD
have not yet been established. The ILD induced by BLM
administration through the airway triggers localized
inflammatory and fibrotic changes around the peri-
bronchiolar region. However, these alterations do not
precisely mimic the pathological manifestations of ILD
associated with CTD. Conversely, continuous subcutane-
ous BLM administration via osmotic minipump results
in inflammatory and fibrotic changes on the pleural side.
The lesion distribution originating from these changes is
comparable to that observed in ILD associated with CTD
[73]. Consequently, we investigated the therapeutic effect
of intravenous ASC transplantation on a BLM-induced
ILD mice model exhibiting diffuse lesions on the pleural
side. The results showed that ASCs inhibited inflamma-
tion and fibrosis in the lungs in a manner dependent on
the number of administered cells [74].

The abovementioned MSCs/ASCs therapies for pre-
clinical models of CTDs and ILD are presented in
Table 2.

Pharmacologically primed AdSC therapy in CTD
model

Current challenges in AdSC therapy

Intravenous administration of ASCs presents several
associated challenges. A preclinical study found that mice
developed pulmonary embolisms following the intrave-
nous administration of a large number of mASCs [75].
Moreover, a clinical study revealed that three patients
who were intravenously administered ASCs developed
pulmonary embolism [76]. Although minimizing the
number of intravenously administered ASCs is prefer-
able, the treatment effect may also be diminished with a
low cell count. Elderly individual-derived ASCs typically
exhibit poorer proliferative and chemotactic activities
than those derived from young individuals [77]. Further-
more, MSCs derived from patients with SLE exhibit char-
acteristics associated with the initial phase of aging and
demonstrate reduced function [78], while ASCs derived
from patients with scleroderma demonstrate reduced
proliferative, metabolic, and chemotactic activities com-
pared to those from healthy individuals [79]. Therefore,
treating the potential induction of pulmonary embolism
by intravenous ASC administration and improving the
functionality of ASCs in elderly patients and those with
underlying diseases necessitate the development of novel
strategies.

Previous reports on pharmacologically primed AdSC
therapy in the CTD model

To address the challenges associated with ASC treat-
ment, recent studies have explored the therapeutic appli-
cation of pharmacologically enhanced ASCs in CTD
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animal models. Kim et al. observed a significant alle-
viation of symptoms related to graft-versus-host disease
in NOD-SCID mice with the administration of MSCs,
including ASCs with IFN-y. This finding implies that the
therapeutic effect may be attributed to the induction of
IDO expression in MSCs through the IFN-y-JAK-STAT1
pathway [80]. Zolfaghari et al. demonstrated that TLR3
ligand-primed ASCs using polyinosinic:polycytidylic
acid (poly L:C) reduced splenocyte proliferation in vitro.
Furthermore, in animal models of adjuvant-induced
arthritis, these cells significantly improved clinical and
histopathological severity, notably reducing TNF-a and
IL-6 levels in serum [81]. Jang et al. reported that met-
formin enhanced the immunoregulatory effect of ASCs
by upregulating STAT1 expression through the AMPK/
mTOR pathway in vitro. Administering metformin-
treated ASCs markedly improved disease activity,
including inflammatory phenotype, glomerulonephritis,
proteinuria, and anti-dsDNA IgG antibody production
in MRL/lpr mice. Additionally, metformin-treated ASCs
inhibited CD4-CD8- T cell proliferation and modulated
the Th17/Treg cell ratio [82].

Heparin-primed ASC therapy in the CTD model

Heparin—an inhibitor of antithrombin III and factor Xa
used in preventing and treating thrombosis [83]—inter-
acts with various proteins, demonstrating multifaceted
efficacy [84]. Heparin stabilizes HGF dimers, thereby
promoting the dimerization and activation of the c-Met
receptor [85]. It augments fibroblast growth factor and
bone morphogenetic protein 4 gene expression, conse-
quently enhancing proliferation and pluripotency in BM-
MSCs and embryonic stem cells, respectively [86—88].
Furthermore, heparin stimulates HGF biosynthesis in
diverse cell types, including lung fibroblasts, promye-
locytic leukemia cells, and umbilical vein endothelial
cells [89, 90]. Therefore, we hypothesized that heparin-
activated ASCs might exhibit a synergistic beneficial
effect on SSc or ILD by promoting anti-inflammatory
and antifibrotic responses. We investigated the effect of
heparin on ASC functions. We compared the therapeu-
tic effects of heparin-enhanced ASCs (hepASCs) to that
of ASCs alone in mouse models of SSc and ILD [91, 92].
Figure 2 shows the procedures for isolating and culturing
mASCs, the preparation and treatment of SSc and ILD
model mice, and the therapeutic effects of SSc skins and
ILD lungs. The results showed that heparin significantly
increased ASC numbers and enhanced their migra-
tory, anti-inflammatory, and antifibrotic effects in vitro.
Additionally, hepASCs demonstrated increased accu-
mulation in the skin or lung tissues compared to ASCs
alone. Moreover, in mice with bleomycin-induced SSc or
ILD, intravenously administered hepASCs significantly
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Fig. 2 Enhanced techniques for isolation and co-cultivating heparin-enhanced murine adipose-derived stem cells, with details on preparation,
treatment protocols, and therapeutic effects for systemic sclerosis and interstitial lung disease model mice. Isolation and culture of ASCs:

ASCs were isolated from the inguinal adipose tissue of 8-week-old female Balb/c mice (for SSc) and 8-week-old female C57BL/6J mice (for

ILD), following euthanasia by cervical dislocation under isoflurane anesthesia. The adipose tissue was washed in PBS, minced, and digested

with type | collagenase (1.0 mg/mL in 1% BSA/HBSS (+)) at 37 °C for 30 min. After filtration and centrifugation, the cell pellet was resuspended

in erythrocyte lysis buffer, followed by medium addition and centrifugation. The resulting mesenchymal ASCs were cultured at a density

of 1x10° cells per 90 mm cell-culture dish and utilized at the third passage. Preparation and treatment of SSc and ILD model mice: HepASCs were
cultured in DMEM/F-12 with 10% FBS, 1% Pen-Strep, and LMWH. For SSc studies, female BALB/c mice (8 weeks old) received daily subcutaneous
injections of 100 pg/100 pL BLM for 21 days. These mice were divided into three groups: BLM alone, BLM with ASCs, and BLM with hepASCs.

For ILD studies, female C57BL/6J mice (13 weeks old) were divided into four groups: untreated (normal), BLM alone, BLM with ASCs, and BLM
with hepASCs. BLM (3 mg in 100 pL saline) was administered subcutaneously over 7 days. For both studies, cells (1.0x10° for lung, 2.5x10* for skin
in 100 pL PBS) or PBS was intravenously injected. Mice were euthanized on day 21 for skin analysis and day 28 for lung analysis, with respective
organs harvested for evaluation. Therapeutic effects of SSc skins and ILD lungs: intravenously administered hepASCs significantly reduced skin
thickness and hydroxyproline content in mice with bleomycin-induced SSc compared to that of the SSc pathological model group. Additionally,
hepASCs decreased collagen deposition and hydroxyproline levels in the lungs compared to those in the ILD pathological model group. ASCs
adipose-derived mesenchymal stem/stromal cells, LMWH low-molecular-weight heparin, SSc systemic sclerosis, ILD interstitial lung disease,
hepASCs ASCs enhanced by LMWH, BLM bleomycin. Arrows indicate collagen deposition area; scale bars in skins and lungs are 300 um and 100 pm,
respectively. Data were analyzed using nonparametric one-way ANOVA, followed by a multiple comparison test. *P < 0.05, **P < 0.01, and ***P <

0.001, a significant difference between the linked groups

reduced skin thickness and hydroxyproline content
compared to the SSc pathological model group. It also
decreased collagen deposition and hydroxyproline levels
in the lungs compared to those in the ILD pathological
model group.

Potential of MSCs transplant rejection and activation

of the immune system

Several reports show that transplanting human MSCs
into mice can trigger transplant rejection despite MSCs’
immunosuppressive properties. Various studies indi-
cate that human MSCs provoke an immune response in

mice, contrary to prior beliefs about their immune-priv-
ileged status [93-95]. This response is most pronounced
in xenogeneic transplantation (human MSCs into mice),
followed by allogeneic and syngeneic transplantation [94,
95]. Notably, xenotransplantation results in significant
infiltration of leukocytes at the injection site, indicating
innate immune system activation [93]. While inevita-
ble for preclinical evaluation, xenotransplantation poses
challenges for clinical translation of human MSC therapy.
Studies suggest using immunosuppressants, such as dexa-
methasone and tacrolimus, to manage immune responses
[93, 96]. Effective immunosuppression protocols are
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crucial for successful xenotransplantation experiments.
In essence, despite MSCs’ immunosuppressive proper-
ties, transplant rejection can occur when transplanting
them into mice. Mitigating immune responses through
careful immunosuppressant use is thus vital for success-
ful xenotransplantation studies.

Clinical applications of MSCs/ASCs for CTDs

and ILD

Table 3 shows the published major clinical trials of
MSCs/ASCs therapy for RA, SLE, SSc, and ILD patients.

Rheumatoid arthritis

In an uncontrolled phase I/II study, 136 patients with RA
resistant to conventional drug treatments were treated
with intravenous administration of 4x107 UC-MSCs.
They were followed up for 8 months [97]. The result
showed significant improvements in the DAS of RA,
health assessment questionnaire, and American Col-
lege of Rheumatology (ACR) response and an increased
frequency of Tregs in the peripheral blood. Patients
whose disease activity worsened following the treatment
received an additional administration of UC-MSCs after
3 months. At the end of the study, 58% of the patients
had achieved ACR20, and none of them experienced
severe adverse events. Additionally, reports indicate the
potential inhibitory effects of single intravenous admin-
istrations of BM-MSCs and UC-MSCs on the disease
activity of RA in a limited number of cases [98—102]. In
2017, Alvaro-Gracia et al. conducted a multicenter, non-
randomized, single-blinded (double-blinded for efficacy
assessment), placebo-controlled phase Ib/Ila study to
examine the safety of intravenously administered allo-
genic ASCs in 53 patients with RA with active disease
refractory to at least two administrations of biological
DMARDs [103]. These researchers administered 1x10°,
2x10° or 4x10° ASCs. The results showed that a higher
proportion of patients achieved ACR20 and ACR50 and
improved DAS in a dose-dependent manner than those
in the placebo group. This study primarily aimed to
determine the safety of ASCs, and the findings revealed
that the treatment was well-tolerated with no serious side
effects, except for one patient who developed lacunar
infarction.

Systemic lupus erythematosus

Studies conducted to date have examined the use of
MSC:s for treatment-resistant SLE, involving a few to over
80 patients. MSCs employed in these studies were allo-
geneic BM- or UC-MSCs, administered intravenously.
These studies collectively found that MSC therapy was
well-tolerated and effective in improving kidney function
and disease activity, reducing proteinuria, and reducing
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anti-ds-DNA antibody levels. MSC transplantation
resulted in an elevation in Tregs in the peripheral blood
and restored the balance between Th1 and Th2 cytokines
[104—110]. One of the representative trials conducted by
Wang et al. was a multicenter study in which 40 patients
with refractory SLE were administered 1x10°/kg UC-
MSCs on days 0 and 7 [106]. Following a 6-month follow-
up, 32.5% of the patients achieved complete remission,
while 27.5% attained partial remission. However, 17.5%
of the patients experienced recurrence. The dosage of
immunosuppressants required was significantly reduced
in most patients. Throughout the follow-up period, three
patients developed herpes simplex virus infection, and
one patient contracted tuberculosis. Furthermore, three
patients died during the follow-up. The causes of death
included acute cardiac arrest 7 days after MSC adminis-
tration, severe pulmonary hypertension that manifested
8 months after the treatment, and pulmonary infection.
Nonetheless, none of these causes were likely associated
with MSC therapy. A reported case described a 9-year-
old girl with SLE showed improved disease activity after
AdSC administration via one nasal injection, one lymph
node injection, and two intravenous injections [111].

Systemic sclerosis

Based on previous studies on MSC therapy for SSc
patients, a systematic review and meta-analysis were con-
ducted to assess the efficacy and safety of MSCs in treat-
ing SSc [112-120]. The study encompassed nine clinical
trials involving 133 adult patients with SSc up to Febru-
ary 1, 2021. These trials included one case of intravenous
BM-MSC administration, two cases of intravenous UC-
MSC administration, three cases of subcutaneous stro-
mal vascular fraction administration, and three cases of
subcutaneous AdSC administration. MSC therapy signif-
icantly reduced the modified Rodnan skin score, digital
ulcer count, oral handicap scales, and visual analog scales
in patients with SSc. Although a few patients presented
with injection site swelling, diarrhea, and joint pain,
these issues resolved on their own, and no severe adverse
events were observed. Overall, the utilization of MSCs
was deemed safe.

Interstitial lung disease

To date, no clinical studies have specifically examined
MSC therapy for ILD associated with CTD. However,
studies on MSC therapy for idiopathic pulmonary fibro-
sis (IPF) exist. Glassberg et al. conducted the first trial
assessing BM-MSCs in patients with mild to moderate
IPF [121]. They infused BM-MSCs from two donors into
nine patients. They observed no severe treatment-related
side effects with doses of up to 2x10® cells over 60 weeks.
However, two deaths unrelated to the study occurred,
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and 78% of patients reported non-serious adverse events
such as bronchitis and colds. Nevertheless, declines in
lung function persisted below the recognized threshold
for disease progression, with a 3.0% and 5.4% decrease
in predicted FVC and DLCO 5.4% after 60 weeks,
respectively. Chambers et al. conducted an open-label,
single-center, non-randomized, uncontrolled, phase Ib
dose-escalation study involving eight patients with mod-
erately severe but not advanced IPF (FVC >50% of pre-
dicted normal; DLCO >35% of predicted normal) [122].
The patients were administered two intravenous doses of
HLA-unmatched placenta-derived MSCs (1x10°/kg body
weight, n = 4; 2x10%/kg/kg body weight, n = 4). During
the 6-month follow-up period, one episode of lingular
left lobe consolidation, considered possibly treatment-
related, occurred 5 days after the infusion of the lowest
cell dose. No other severe side effects attributed to the
administration of MSCs were reported. Tzouvelekis et al.
conducted an open-label, single-group, non-comparative,
phase-Ib clinical trial comprising 14 patients with mild
or moderate IPF (FVC >50% of predicted normal; DLCO
>35% of predicted normal) [123]. The patients were
treated with endobronchial administration of autolo-
gous adipose tissue-derived stromal cell-stromal vascu-
lar fraction (0.5x10%kg body weight/dose, administered
thrice at monthly intervals). No other severe side effects
directly attributed to the administration of these cells
were reported.

Table 4 presents the current clinical trials identified
through the National Library of Medicine website of the
National Institutes of Health for RA, SLE, SSc, and ILD
(visit: www.clinicaltrials.gov). The number of clinical tri-
als assessing the effectiveness and safety of BM-MSCs
and UC-MSCs for CTD and ILD is on the rise. However,
studies on AdSCs in this context remain limited, posing a
future challenge.

Conclusion

In conclusion, recent advances in the treatment of CTD
have yielded a myriad of therapeutic options, particularly
in the realm of RA and SLE. Although in this regard, con-
ventional immunosuppressants and biological or targeted
synthetic DMARDs have shown certain efficacy, chal-
lenges persist with respect to issues such as side effects
and the lack of effective treatments for various CTDs,
including SSc. CTD often manifests with organ damage,
and ILD has emerged as a particular concern, given its
significant impact on patient prognosis. Despite the cur-
rent application of treatment modalities involving corti-
costeroids, immunosuppressive agents, and anti-fibrotic
agents, CTD is still associated with a high incidence of
respiratory failure and mortality.
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In this context, MSCs have gain considerable attention
with respect to their regenerative potential. Specifically,
ASCs are gaining prominence on account of their acces-
sibility and immunomodulatory effects. In this review,
we have provided an overview of evidence obtained from
preclinical studies that have evaluated the efficacy of
MSC therapy in managing CTD and ILD, with a particu-
lar emphasis on AdSC therapy. The immunomodulatory
effects of MSCs are highlighted, emphasizing their capac-
ity to modulate a range of different immune cell types
and cytokines, thereby identifying these stem cells as a
promising avenue for CTD treatment. Notably, compared
with other MSC types, such as BM-MSCs, ASCs have
been established to have a number advantages in terms of
accessibility, proliferation rates, and immunomodulatory
potency.

Furthermore, our review of preclinical models, includ-
ing those for RA, SLE, SSc, and ILD, highlight the poten-
tial of MSC/ASC therapy in ameliorating disease severity
and improving patient outcomes. In addition, we also
assess the challenges associated with the application ASC
therapy, including intravenous administration-related
complications. In response to these challenges, recent
studies have begun the evaluate the efficacy of pharma-
cologically primed ASC therapy, introducing innova-
tive approaches designed to enhance therapeutic effects.
Among these, investigations into heparin-primed ASCs
have yielded promising results in mitigating CTD-related
symptoms.

We conclude the review by providing insights into the
clinical applications of MSCs/ASCs for CTDs, includ-
ing rheumatoid arthritis, systemic lupus erythematosus,
systemic sclerosis, and interstitial lung disease. Clini-
cal trials conducted to date have verified the safety and
potential efficacy of MSCs, particularly ASCs, in treat-
ing refractory cases, paving the way for further research
and development. In summary, the multifaceted poten-
tial of MSCs, particularly ASCs, in managing CTD and
ILD represents a promising avenue for future therapeu-
tic interventions. Moreover, the development of phar-
macologically enhanced ASCs will provide innovative
strategies for overcoming current challenges, thereby
broadening the scope for advancing the field and improv-
ing patient outcomes.

Abbreviations

MSCs Mesenchymal stem cells

ASCs Adipose-derived MSCs

CTD Connective tissue disease

ILD Interstitial lung disease

RA Rheumatoid arthritis

DMARDs  Disease-modifying anti-rheumatic drugs
SLE Systemic lupus erythematosus

CYc Cyclophosphamide

MMF Mycophenolate mofetil

SSc Systemic sclerosis
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HLA Human leukocyte antigen

TGF-B1 Transforming growth factor-B31
PGE2 Prostaglandin E2

HGF Hepatocyte growth factor

NK Natural killer

T5G-6 TNF-a-stimulated gene 6

MMPs Matrix metalloproteinases

mMRNA Messenger RNA

BM-MSCs  Bone marrow-derived MSCs
UC-MSCs  Umbilical cord blood-derived MSCs
HOCI Hypochlorous acid

hepASCs  Heparin-enhanced ASCs

ACR American College of Rheumatology
IPF Idiopathic pulmonary fibrosis
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