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Abstract 

Background  Inflammatory respiratory diseases, such as interstitial lung disease (ILD), bronchial asthma (BA), chronic 
obstructive pulmonary disease (COPD), and respiratory infections, remain significant global health concerns owing 
to their chronic and severe nature. Emerging as a valuable resource, blood extracellular vesicles (EVs) offer insights 
into disease pathophysiology and biomarker discovery in these conditions.

Main body  This review explores the advancements in blood EV proteomics for inflammatory respiratory diseases, 
highlighting their potential as non-invasive diagnostic and prognostic tools. Blood EVs offer advantages over tradi-
tional serum or plasma samples. Proteomic analyses of blood EVs have revealed numerous biomarkers that can be 
used to stratify patients, predict disease progression, and identify candidate therapeutic targets. Blood EV proteomics 
has identified proteins associated with progressive fibrosis in ILD, offering new avenues of treatment. In BA, eosino-
phil-derived EVs harbor biomarkers crucial for managing eosinophilic inflammation. Research on COPD has also iden-
tified proteins that correlate with lung function. Moreover, EVs play a critical role in respiratory infections such 
as COVID-19, and disease-associated proteins are encapsulated. Thus, proteomic studies have identified key molecules 
involved in disease severity and immune responses, underscoring their role in monitoring and guiding therapy.

Conclusion  This review highlights the potential of blood EV proteomics as a non-invasive diagnostic and prognostic 
tool for inflammatory respiratory diseases, providing a promising avenue for improved patient management and ther-
apeutic development.
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Background
Inflammatory respiratory diseases, including intersti-
tial lung disease (ILD), bronchial asthma (BA), chronic 
obstructive pulmonary disease (COPD), and other infec-
tious diseases, are significant global health concerns. 
Although nonmalignant, these conditions are major 
causes of morbidity and mortality worldwide and are 
characterized by chronic inflammation, varying degrees 
of airway obstruction, and tissue remodeling, which can 
lead to severe respiratory failure. Despite their clinical 
importance, no effective biomarkers have been identi-
fied that reflect the pathophysiology of these diseases or 
can be used in personalized medicine, although detailed 
mechanisms have been elucidated.

Extracellular vesicles (EVs) are lipid bilayer-enclosed 
vesicles secreted by all types of cells, and they cannot 
replicate on their own [1]. They are known to play cru-
cial roles as intercellular communication agents in patho-
physiological processes. EVs contain lipids, proteins, 
and nucleic acids. Based on differences in size and pro-
duction mechanisms, there are various classifications 
of EVs. Exosomes are vesicles derived from endosomal 
membranes and are released through multivesicular body 
(MVB) [1]. In contrast, ectosomes are vesicles the directly 
bud from the plasma membrane. With respect to the 
size of EVs, small EVs (50–150 nm in diameter) includ-
ing exosomes are the most abundant in the body fluids, 
whereas large EVs (≥ 1 μm in diameter) such as apoptotic 
bodies are present in smaller numbers [2]. These vesicles 
are released into various body fluids, including blood, 
urine, saliva, and breast milk, and are taken up by target 
cells through direct membrane fusion, ligand-receptor 
interactions, or endocytosis [3]. Most of circulating EVs 
are thought to be cleared by uptake in target organs [3].

Recent advancements in EV research have opened new 
opportunities for elucidating the pathogenesis of vari-
ous diseases, including malignancies and inflammatory 
conditions, and for discovering novel biomarkers. The 
regulation of EV biosynthesis and cargo selection is cru-
cial for identifying pathology-specific profiles essential 
for clinical applications [4, 5]. Among the various omics 
approaches, proteomics is directly related to phenotypes, 
and proteins have been most frequently used as biomark-
ers in clinical practice [6]. Particularly in cancer research, 
proteins of blood EVs, which include plasma or serum 
EVs, are being actively explored as promising tools for 
liquid biopsy, offering non-invasive methods for diagno-
sis and prognostic evaluation [7–9].

Lungs are the largest organ in the body with extensive 
blood circulation; therefore, blood EV proteomics is a 
valuable approach for biomarker discovery and under-
standing the pathogenesis of inflammatory respiratory 
diseases. This review details the technical advancements 

and significant findings in blood EV proteomics research 
within the context of inflammatory respiratory diseases 
and discusses their potential clinical applications and 
prospects (Fig. 1).

Proteomics technology for EVs
Recently, blood EVs have attracted considerable atten-
tion as valuable resources for biomarkers, and they can 
be easily and repeatedly collected from blood and, unlike 
plasma or serum, are protected from degradation by pro-
teases, retaining disease-related molecular information 
[1, 10]. Furthermore, EVs lack abundant proteins such as 
albumin and globulins, making them more suitable for 
deep proteomic analysis than plasma or serum [11].

Advances in proteomic techniques have been remark-
able in recent years. Mass spectrometry (MS) tech-
niques are primarily used in high-depth proteomics. 
Typically, mixtures of peptide fragments are introduced 
into an analytical system, liquid chromatography/mass 
spectrometry (LC–MS/MS), in which a tandem mass 
spectrometer is connected to a low-flow liquid chroma-
tograph [12]. Conventional peptide measurements rely 
on the technique of data-dependent acquisition (DDA), 
which automatically selects ionized peptides for frag-
mentation based on the detection intensity of each ion 
[13]. This method can be used to identify numerous 
proteins.

Recently, however, a new MS mode, data-independent 
acquisition (DIA), has been developed. In this method, 
ions within a set m/z range are simultaneously subjected 
to fragmentation while shifting the m/z window rather 
than being selected on an ionized peptide-by-peptide 
basis. This revolutionary method, also known as next-
generation proteomics, enables comprehensive protein 
identification at greater depths with higher precision 
than DDA [14, 15].

By utilizing blood EVs and analyzing them using state-
of-the-art proteomic techniques, it has become possible 
to measure a wide range of pathophysiology-related pro-
teins, even in trace amounts. Consequently, biomarker 
research for various diseases, particularly cancer, has 
advanced, and a new understanding of their pathogenesis 
has been achieved. This strategy is also being applied in 
research on inflammatory respiratory diseases.

Blood EV proteomics in ILDs
Interstitial lung diseases (ILDs) comprise a category of 
disorders marked by inflammation and fibrosis of the 
lung interstitium, leading to reduced pulmonary func-
tion. ILDs include various underlying conditions, such 
as idiopathic pulmonary fibrosis (IPF), connective tissue 
disease-related ILD, and chronic hypersensitivity pneu-
monitis. Increasing attention is being given to a subset of 
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these diseases that progress to a phenotype characterized 
by extensive fibrosis, known as progressive fibrosing ILD 
(PF-ILD) [16] or progressive pulmonary fibrosis (PPF) 
[17]. It is estimated that 30–40% of ILD cases develop 
progressive fibrosis with a poor prognosis, exhibiting a 
median survival of 2.5–3.5 years [18].

The role of EVs in fibrosis pathogenesis has attracted 
considerable attention. For example, WNT5A-positive 
EVs, produced predominantly by fibroblasts, promote 
fibrosis [19]. Aging fibroblasts induce fibroblast infil-
tration via fibronectin in EVs [20]. Proteomic analyses 
of fibroblast-derived EVs from patients with IPF have 
revealed a higher number of proteins involved in fibro-
genic processes than those from healthy individuals [21]. 
While EVs from alveolar epithelial cells have been impli-
cated in fibroblast activation [22], EVs from the airway 
epithelial cells of patients with IPF promote epithelial cell 
senescence and induce inflammation [23].

Therefore, blood EV proteomics holds promise for the 
identification of key disease molecules and biomarkers 
(Table  1). For example, Adduri et  al. performed LC–
MS/MS proteomic analysis on 163 plasma EV samples, 
including those from patients with IPF, CHP, and NSIP, 
and healthy controls, identifying EV proteins SFTPB, 

ALDOA, HMGB1, CALML5, and TLN1 as useful 
markers for distinguishing IPF from other ILDs [24]. In 
another study, serum EVs from patients with ILD exhib-
iting progressive fibrosis other than IPF were analyzed 
using DIA-based next-generation proteomics, revealing 
2420 proteins. Among them, SFTPB is a biomarker for 
predicting progressive fibrosis, which was confirmed 
using immunohistochemical analyses of patient lung 
tissues. SFTPB, a pulmonary surfactant protein pro-
duced by alveolar epithelial cells, is normally shed and 
matures. The mature form, which is abundant in the 
serum, is not a reliable predictor of progressive fibro-
sis. However, the pro-form is secreted into EVs during 
fibrosis and protected from shedding, and can accu-
rately predict progressive fibrosis [25]. Interestingly, in 
single-cell RNA sequencing of lung tissues of a murine 
model of pulmonary fibrosis, the expression of SFTPB 
was upregulated in alveolar epithelial cells before the 
fibrotic phase, suggesting that this molecule is associ-
ated with profibrotic pathophysiology. Furthermore, 
Bayesian network integration analysis of the serum EV 
proteome with clinical data revealed IPF-specific net-
work including modules related to TGF-β signaling and 

Fig. 1  Workflow for proteomics studies in inflammatory lung diseases using blood EVs. First, from blood samples collected from patients 
and control cases, EVs are extracted. Proteomics, mainly mass spectrometry-based proteomics, is conducted on these EV samples. The obtained 
proteomic data are compared between patients and controls to identify candidate biomarkers or key molecules associated with the diseases. 
The results are validated in an independent cohort to confirm the promising candidates. Subsequent studies include the validation of these 
candidates using clinically applicable measurement systems and biological analyses to elucidate the pathophysiological mechanisms regulated 
by the identified molecules. Abbreviations: LC–MS/MS, liquid chromatography with tandem mass spectrometry; DIA, data independent acquisition; 
DDA, data dependent acquisition; MRM, multiple reaction monitoring
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complement pathways, when comparing patients with 
IPF to healthy subjects [26].

Despite the potential of blood EV proteomics, the field 
remains in its infancy, and relatively fewer studies have 
focused on miRNAs [27]. This area of research holds sub-
stantial promise for further development, particularly 
when considering the heterogeneity of ILDs. Identifying 
molecules that facilitate patient stratification and control 
of common pathological processes, such as PPF, remains 
a critical issue.

Blood EV proteomics in BA
BA is a common chronic allergic airway disease charac-
terized by reversible airflow limitation in the peripheral 
airways, leading to clinical symptoms such as wheezing 
and dyspnea [28]. Approximately 300 million patients 
suffer from asthma worldwide [29], with asthma-related 
deaths reported to be approximately 200,000 per year 
[30], making it a major global health challenge. The 
pathogenesis of BA involves immune cells, such as eosin-
ophils, Th2 lymphocytes, and type 2 innate lymphocytes, 
as well as non-immune cells including airway epithelial 
cells and smooth muscle cells.

Cytokine-mediated interactions, including those between 
TSLP, interleukin (IL)-13, IL-33, and IL-5, play crucial 
roles in promoting disease; these cytokines are targets 
for biologic agents [31, 32]. The significance of EVs in 
the pathogenesis of BA has been highlighted by numer-
ous studies. For example, eosinophil-derived EVs are 
released in response to inflammatory stimuli [33], den-
dritic cell-derived EVs promote CD4+T cell proliferation 
and Th2 differentiation [34], and airway epithelial cell-
derived EVs can induce airway inflammation [35]. Nota-
bly, Cañas et  al. conducted proteomic analysis on EVs 
extracted from peripheral blood eosinophils of patients 
with asthma and healthy subjects and demonstrated that 
eosinophil-derived EVs from patients with asthma pro-
mote ROS production and eosinophil migration [36].

By focusing on the proteomics of serum EVs, Yoshimura 
et al. identified Galectin-10 as a biomarker of eosinophilic 
asthma using DIA MS [37]. This protein demonstrated 
superior diagnostic capability compared with periph-
eral blood eosinophil counts and correlated with clini-
cal parameters, such as airflow obstruction and mucus 
plug. Moreover, Galectin-10 released by eosinophils dur-
ing EETosis has been found to correlate with the degree 
of EETosis in BA lung tissue and nasal mucosal tissue in 
chronic rhinosinusitis with nasal polyps, suggesting that 
Galectin-10 in EVs may reflect the pathogenesis of eosin-
ophilic inflammation in asthma (Table 1).

Although eosinophil-derived EVs, which are crucial for 
the development of BA, are a rich source of biomarkers 
and important disease molecules, it is essential to focus 

on EVs derived from cells other than eosinophils to iden-
tify biomarkers and elucidate the pathophysiology of 
non-eosinophilic asthma in the future. Compared with 
eosinophilic asthma, non-eosinophilic asthma currently 
lacks sufficient biomarkers and therapeutic options, 
and the proteomics of blood EVs may offer a valuable 
research tool to address this unmet need.

Blood EV proteomics in COPD
COPD is a long-term lung condition marked by persis-
tent airflow obstruction that primarily results from the 
prolonged inhalation of tobacco smoke. Inhalation of 
harmful substances induces inflammation, oxidative 
stress, and alveolar cell apoptosis, triggering alveolar 
destruction and remodeling [38]. One of the primary 
mechanisms by which EVs contribute to the pathogen-
esis of COPD involves the degradation of the extracellu-
lar matrix. Neutrophil elastase level in EVs derived from 
multinucleated cells is higher in the lungs of patients 
with COPD than in the lungs of healthy subjects, and the 
transfer of these EVs collected by bronchoalveolar lavage 
of patients with COPD to mice can induce COPD-like 
symptoms [39]. In addition, in vitro studies have shown 
that EVs released from airway epithelial cells in response 
to cigarette smoke exposure promote MMP-1 produc-
tion via CCN1 (Cyr61) [40] and macrophages produce 
MMP14-rich EVs when stimulated with cigarette smoke 
extract [41]. EVs derived from macrophages after atmos-
pheric fine particulate matter (PM) stimulation induce 
IL-6 and TNFα production in lung epithelial cells [42]. 
Similarly, mononuclear cells stimulated by cigarette 
smoke extract produce microparticles that induce proin-
flammatory mediators such as ICAM-1 and IL-8 in lung 
epithelial cells [43]. Moreover, EVs from airway epithe-
lial cells stimulated with cigarette smoke extract have 
been shown to induce M1 macrophage polarization [44]. 
These findings suggest that EVs play a role in promoting 
chronic airway inflammation.

Several proteomic studies have been conducted on 
blood EVs in patients with COPD (Table 1). For example, 
Koba et al. performed a proteomic analysis of serum EVs 
from patients and mouse models with COPD to identify 
common biomarkers [45]. The authors identified Fibu-
lin-3 as an elevated protein in patients with COPD, cor-
relating with the extent of emphysema on CT scans and 
reduced pulmonary function. Notably, Fibulin-3-knock-
out mice spontaneously developed emphysema, suggest-
ing that key pathological molecules were encapsulated 
within EVs. Distinguishing acute exacerbations of COPD 
(AECOPD) from bacterial pneumonia, often present-
ing as acute respiratory failure, is clinically challenging. 
Jung et  al. conducted a comprehensive examination of 
the surface proteins on plasma EVs from patients with 
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community-acquired pneumonia and AECOPD using 
protein microarrays and successfully identified CD45 and 
CD28 as the most useful markers for differentiation [46].

To date, blood EV omics analysis in COPD has mainly 
focused on miRNAs [47, 48]; however, as discussed 
above, substantial evidence suggests that EV proteins 
play a critical role in the pathogenesis of COPD. Given 
the lack of curative treatments for COPD, identifying 
molecules through blood EV proteomics that influence 
disease pathogenesis or serve as therapeutic targets is 
crucial.

Blood EV proteomics in respiratory infections
The role of EVs in the pathogenesis of respiratory infec-
tions, including viral and bacterial infections, is being 
increasingly recognized. In particular, the COVID-19 
pandemic, which has led to numerous severe cases and 
deaths, has promoted extensive research on blood EV 
proteomics and EV involvement in disease pathogenesis.

EVs in viral infections
The involvement of EVs in COVID-19 pathogenesis has 
been extensively investigated. EVs derived from SARS-
CoV-2-infected cells contribute to disease propagation by 
transporting viral particles and inflammatory molecules 
[49–51]. EVs from epithelial cells containing SP-C can 
induce chronic inflammation in the heart [52]. Moreover, 
endothelial cell-derived serum EVs are correlated with 
hospitalization mortality [53]. In immune cells, EVs from 
dendritic cells stimulated by viral proteins activate CD4+ 
and CD8+ T-cells [54], and neutrophil elastase in EVs has 
been reported to cause endothelial cell damage [55].

EVs are involved in the pathogenesis of other viral 
infections by inducing inflammation. For instance, in 
RS virus infection, EVs from infected epithelial cells 
show altered protein profiles, leading to elevated lev-
els of chemokines including CCL20 [56]. EVs derived 
from infected lung epithelial cells stimulate monocytes 
and epithelial cells to secrete proinflammatory media-
tors [57]. Previous studies have suggested that EVs may 
have protective functions against infections. In influenza 
infection, EVs have a role in host defense including neu-
tralizing the virus [58]. Additionally, the uptake of mac-
rophage-derived EVs by alveolar epithelial cells increases 
endosomal acidification and inhibits viral nuclear trans-
fer and replication [59].

Most studies on blood EV proteomics in viral infec-
tions have focused on COVID-19, revealing critical 
insights through various proteomic methods (Table  1). 
Mao et al. used MS in the DIA mode to analyze plasma 
EVs from patients with COVID-19 in the recovery phase, 
identifying a total of 394 proteins, with 174 differen-
tially expressed proteins associated with coagulation, 

inflammation, immune response, and organ dysfunction 
[60]. Similarly, Fujita et  al. employed DDA mode prot-
eomics on serum EVs from patients with COVID-19 and 
discovered that the protein COPB2 could diagnose severe 
illness post-admission with high accuracy (AUC = 1.0 in 
the discovery set, AUC = 0.85 in the validation set) [61]. 
These findings underscore the utility of the DIA and 
DDA methods in identifying critical proteins involved 
in COVID-19 pathogenesis. In addition to these meth-
ods, Krishnamachary et al. used the proximity extension 
assay (PEA) on plasma EVs from 84 hospitalized patients 
with COVID-19 to uncover enriched pathways related 
to coagulation and inflammation. The authors identi-
fied EN-RAGE, TF, and IL-18R1 as proteins that strongly 
correlated with disease severity and length of hospitali-
zation, suggesting that these proteins are key markers in 
COVID-19 pathology. Furthermore, EVs from patients 
with COVID-19 have been shown to induce the apop-
tosis of pulmonary microvascular endothelial cells in 
relation to disease severity, highlighting the potential of 
PEA in identifying biomarkers [62]. Multiomics analyses 
provided significant insights. Lam et al. combined DDA 
proteomics with lipidomics to analyze plasma EVs from 
patients with COVID-19 at different stages of the disease. 
The authors revealed enrichment of pathways involved in 
the complement system, coagulation cascade, and platelet 
activation, with decreased levels of C1r and C1s during 
the symptomatic phase compared to the asymptomatic 
phase, indicating potential biomarkers for disease pro-
gression [49]. Kawasaki et al. used DIA mode proteomics 
on serum EVs from patients with COVID-19 of varying 
severities and combined it with single-cell analysis of 
peripheral blood mononuclear cells. The authors identi-
fied a group of macrophage-related proteins enriched in 
refractory cases. Notably, they found that MACROH2A1, 
which was induced in monocytes and macrophages, is 
a biomarker for refractory COVID-19 pneumonia that 
is resistant to corticosteroids, emphasizing the value of 
integrating multi-omics approaches to understand com-
plex disease mechanisms [63].

EVs in bacterial infections
EVs can mediate pathogen transmission during bacte-
rial infections. For example, in Legionella infection, EVs 
from infected cells can spread to other cells and promote 
the expression of inflammatory cytokines [64]. In tuber-
culosis, antigen-presenting cells take up EVs containing 
mycobacterial antigens, thereby activating the acquired 
immune system [65–67]. EVs also directly activate the 
immune system and induce inflammation; in Staphylo-
coccus aureus infections, neutrophil-derived EVs induce 
IL-6 and IL-1β production by macrophages [68]. In Lis-
teria infections, EVs from infected dendritic cells induce 
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stronger anti-pathogenic responses in recipient imma-
ture dendritic cells than those from uninfected cells [69]. 
These studies collectively highlight the pivotal role of EVs 
in bacterial infections, in not only facilitating pathogen 
transmission but also modulating immune responses and 
inflammation.

In the blood EV proteomics of bacterial infections 
(Table  1), Mehaffy et  al. performed targeted proteom-
ics (MRM-MS) on sera from 74 patients with latent 
tuberculosis infection (LTBI) and 29 controls, detect-
ing Mycobacterium tuberculosis-derived peptides in 95% 
of patients with LTBI [70]. Another study compared the 
serum EV proteomes of six pediatric patients with pneu-
monia with those of healthy controls, revealing host 
response features such as neutrophil activation and com-
plement regulation [71].

In summary, EVs play a significant role in immune 
response and tissue damage in infectious diseases by 
transporting either pathogens or derived proteins and 
inducing inflammation. Numerous molecules regulat-
ing pathological conditions have been identified through 
blood EV proteomics, making it one of the most active 
research areas outside oncology. Identifying biomarkers 
and therapeutic targets for clinical applications is highly 
anticipated.

Conclusions and perspectives
The proteomics of blood EVs in inflammatory lung dis-
eases can reveal valuable biomarkers, including key mol-
ecules related to disease pathogenesis, likely due to the 
functional characteristics of EVs and their advantages 
over serum or plasma as proteomic samples. Given the 
large volume of circulating blood passing through the 
lungs, organ-specific EVs may be more abundant in the 
bloodstream. EVs contain not only biomarkers but also 
crucial molecules that regulate pathological conditions; 
for instance, knockout mice lacking such molecules may 
display disease phenotypes [45]. Consequently, therapies 
targeting EV proteins can be developed using these pro-
teins as companion biomarkers.

Several limitations of blood EV proteomics research 
persist. First, EV proteins are not readily captured in clin-
ical practice using tools such as ELISA kits, and the iden-
tified biomarker molecules do not immediately translate 
into clinical applications. Developing assay systems for 
the direct detection of EV proteins is crucial, and pro-
gress has been made in this area [72, 73]. If trends in EV 
protein variations mirror those of whole serum or plasma 
proteins, these findings could be easily applied in clinical 
settings, as similar trends can be reproduced using ELISA 
on serum samples [74]. Second, the lack of standardized 
EV extraction protocols, immature proteomic analysis 

systems, and interpretation methods, along with devel-
oping techniques to improve the reproducibility of MS 
results, remain major challenges that must be addressed 
by future studies [6, 75–77]. To mitigate these issues, 
validating exploratory studies with additional cohorts is 
desirable.

In summary, blood EV proteomics for inflammatory 
respiratory diseases represents a promising research 
approach with potential applications in liquid biopsy 
and discovering novel therapies. The important findings 
discussed in this review highlight the significance of this 
approach. Further technological advances, such as the 
development of more reproducible proteomic assays and 
direct measurement systems for EVs, will contribute to 
progress in this field.
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