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Abstract 

During human evolution, some genes were lost or silenced from the genome of hominins. These missing genes 
might be the key to the evolution of humans’ unique cognitive skills. An inactivation mutation in CMP-N-acetylneu-
raminic acid hydroxylase (CMAH) was the result of natural selection. The inactivation of CMAH protected our ances-
tors from some pathogens and reduced the level of N-glycolylneuraminic acid (Neu5Gc) in brain tissue. Interestingly, 
the low level of Neu5Gc promoted the development of brain tissue, which may have played a role in human evolu-
tion. As a xenoantigen, Neu5Gc may have been involved in brain evolution by affecting neural conduction, neuronal 
development, and aging.

Key points 

• What is already known about this topic?

About 2.8 million years ago, the gene CMAH was inactivated in humans. Since then, Neu5Gc can no longer be synthe-
sized in humans and is therefore a xenoantigen. Neu5Gc from dietary sources such as red meat and dairy products 
can be incorporated into glycoconjugates of cells. Therefore, low levels of Neu5Gc are present in the human body 
and continuously stimulate the immune system, including in the brain.

• What does this study add?

This review describes the adverse effects of Neu5Gc on brain development. The absence of endogenous Neu5Gc may 
play an important role in the evolution of the human brain. Abnormal accumulation of Neu5Gc in the brain is associ-
ated with aging and abnormal development of the brain. Neu5Gc-associated sialic acid (Sia) dysfunction can lead 
to abnormal brain connectivity. Moreover, high level of Neu5Gc is related to abnormal axonal myelination, Alzheimer’s 
disease (AD), and memory loss.
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Graphical Abstract
During human evolution, humans lost the ability to synthesize Neu5Gc after the inactivation mutation of the gene 
CMAH. Therefore, Neu5Gc in the human body is a xenoantigen. The inactivation of CMAH and the loss of endogenous 
Neu5Gc may have played a role in human brain evolution by affecting neural conduction, neuronal development, 
and aging.

Introduction
During human evolution, some genes have been mutated, 
deleted, or silenced due to environmental or reproductive 
selection, while most genes have been preserved and sta-
bilized because they are adaptive [1]. These ancient genes 
have important physiological and even pathological impli-
cations for humans today. For example, some genes may 
be associated with genetic diseases in modern humans, 
such as depression and nicotine addiction [2, 3]. At the 
same time, some genes were silenced and disappeared 
from the human genome, which influenced metabolism, 
the immune system and nervous system, and even intel-
ligence and aging in humans [4]. In early 2022, researchers 
made a major breakthrough in xenogeneic heart trans-
plantation by developing “Pig 3.0,” whose glycan epitopes 
that are incompatible with the human immune system 
(galactose-α−1,3-galactose, N-glycolylneuraminic acid 
(Neu5Gc), and SDa epitopes) were knocked out. “Pig 3.0” 

is suitable for cross-species transplantation [5]. There was 
an inactivation mutation in CMP-N-acetylneuraminic 
acid hydroxylase (CMAH) in humans. The inactivation 
of CMAH has been shown to affect some systems in the 
human body, such as the cardiovascular system. This is 
closely related to a series of immune reactions triggered 
by Neu5Gc in human body [6–8]. The level of Neu5Gc in 
brain tissue was reduced after the mutation of CMAH [9]. 
Interestingly, the inactivation of CMAH occurred about 
2.8 million years ago, and the expansion of the human 
brain volume occurred about 2.1–2.2 million years ago 
[10]. The timing of these evolutionary events suggests that 
Neu5Gc may have played a role in human brain evolution.

Mystery of the loss of endogenous Neu5Gc
Neu5Ac and Neu5Gc in nature
All vertebrate cells in nature are covered in a dense and 
complex layer of sugar chains whose ends are modified 
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by abundant sialic acids (Sias) [11]. Sia is a hydroxylated 
monosaccharide acylation derivative with a backbone of 
nine carbon atoms that plays an important role in medi-
ating cell recognition and cell flow, making it a bridge 
between cells and the extracellular matrix [12, 13]. At 
present, Sia has been found to be composed of N-acetyl-
neuraminic acid (Neu5Ac), Neu5Gc, deaminoneuraminic 
acid, and their derivatives. These Sias are modified by 
methylation, acetylation, and sulfation at sites 4, 7, 8, and 
9 to produce more than 50 chemical species [14]. Neu5Ac 
and Neu5Gc are the most common Sias on mamma-
lian cells. Neu5Gc is produced when CMAH catalyzes a 
hydroxyl addition of Neu5Ac [15].

Human evolution and inactivation of CMAH
A comparison of the genomes of Neanderthals, modern 
humans, and apes has revealed that some of the functional 
effects of DNA fragments unique to modern humans 
helped us evolve unique cognitive skills, such as a muta-
tion in the FOXP2 transcription factor 200,000 years ago, 
which had an important influence on motor control and 
language production in modern humans [16]. An inacti-
vation mutation in the CMAH gene 2.8 million years ago 
may have contributed to human evolution [10]. The muta-
tion consisted of a 92-bp deletion in the CMAH sequence, 
resulting in premature stop codon and functional inactiva-
tion of the enzyme [17]. Since then, humans can synthe-
size Neu5Ac but cannot modify it into Neu5Gc, whereas 
gorillas and ancient hominids can [18].

Pathogen pressure and loss of endogenous Neu5Gc
Recent studies have shown that humans are not the only 
species to have lost the ability to synthesize Neu5Gc. 
Other mammals, such as some primates, bats, and 
toothed whales, also experienced the loss of function 
of the CMAH gene caused by exon deletion, a prema-
ture stop codon, or frameshift mutation [19–21]. This 
evidence suggests that the loss of endogenous Neu5Gc 
and the production of anti-Neu5Gc antibodies might 
be the result of natural selection, and that such genetic 
changes are adaptive. One possible explanation is that 
these mutations confer resistance to pathogens [22]. 
Pathogenic bacteria, protozoa, viruses, and toxins bind to 
host Sia to mediate invasion of cells [23, 24]. Therefore, 
human ancestors escaped infection by nonhuman homi-
nid (NHH) malaria, a pathogen with a preference for 
binding to Neu5Ac and its derivatives, by eliminating the 
synthesis of Neu5Gc [25]. Although a strain of this NHH 
malaria later evolved to preferentially bind to human 
Neu5Ac-rich red blood cells, now known as human Plas-
modium falciparum malaria [26], the evolution of NHH 

malaria also explained the difference in Sia-binding pref-
erence between human P. falciparum malaria parasites 
and African NHH erythrocytes [17].

Reproductive compatibility and loss of endogenous 
Neu5Gc
Another intriguing explanation for the inactivation of 
CMAH is that selective reproduction between people 
who lack endogenous Neu5Gc may lead to positive 
selection for this genotype [27]. In the sperm of CMAH 
(− / +) or CMAH (+ / +) male mice with normal CMAH 
gene function, Neu5Gc will be carried by a highly sialic 
GPI-anchored protein such as CD52 [28]. However, 
CMAH (− / −) female mice with inactivation of CMAH 
gene function can produce anti-Neu5Gc antibodies 
in the reproductive tract that bind to sperm carrying 
Neu5Gc. This immune reaction will lead to the major-
ity of sperm being destroyed by uterine immune cells, 
thus seriously reducing fertility (Fig.  1) [26, 27]. This 
reproductive xenoimmunity can drive the frequency of 
the CMAH ( −) allele up in the population to fixation.

Brain evolution and loss of endogenous Neu5Gc
According to the current scientific consensus, the evo-
lution of ancient hominids into modern humans and 
modern NHHs involved complex gene-environment 
interactions at the population level. The inactivation of 
the CMAH gene, driven by a combination of pathogen 
avoidance and reproductive conflict, would theoreti-
cally contribute to human survival and development. 
Although this mutation would have greatly changed 
the molecular composition of glycosylation in cells 
throughout the human body, it conferred the unique 
cognitive and physical adaptations of modern humans 
compared to NHHs [29]. Some studies have found that 
Neu5Gc might have a toxic effect on the vertebrate 
nervous system, thus affecting the evolution of the brain 
[30]. However, endogenous Neu5Ac is expressed in the 
human nerve cell membrane at a level 2–4 times higher 
than in most other mammals [31]. This could mean that 
the complete loss of endogenous Neu5Gc in brains rich 
in Sia might have helped humans evolve more complex 
and plastic brains. In addition, humans have the abil-
ity to run long distances, which is unique among pri-
mates. This ability contributed to an increased range of 
resource exploration, the pursuit of prey over long dis-
tances, and escape from danger [32]. We attribute this 
human high endurance to anatomical and physiological 
adaptations [33, 34]. Some studies have found that the 
inactivation of the CMAH gene in mouse models can 
promote the ability to use oxygen and fatigue resistance 
in muscle, which lead to increased endurance [35].
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Absorption and metabolism of Neu5Gc
Due to the inactivation of the CMAH gene, Neu5Gc 
cannot be synthesized in humans. However, trace 
amounts of Neu5Gc can still be detected in human 
cells [36]. CMAH (− / −) mice exhibit a complete 
absence of Neu5Gc throughout the body, suggesting 
a lack of alternative pathways for Neu5Gc synthesis 
in the human body [37, 38]. An alternative explana-
tion is that exogenous Neu5Gc can be introduced into 
human tissues. Dietary sources rich in Neu5Gc mainly 
include red meat and dairy products [39]. In fact, 
the human metabolic system does not discriminate 
between Neu5Gc and Neu5Ac. It recognizes exogenous 
Neu5Gc as Neu5Ac [36, 40, 41]. Because of this, exog-
enous Neu5Gc can be incorporated into epithelial cells, 
endothelial cells, embryonic cells, and cancer cells [40, 
42–44]. First, free Neu5Gc is absorbed by endocytosis 
in the gut, and bound Neu5Gc is released by lysosomal 
sialidase. Then Neu5Gc is transported to the cytoplasm 
by Sia transporters and is activated as CMP-Neu5Gc 

in the nucleus. Finally, CMP-Neu5Gc enters the Golgi 
body through Sia transporters where sialyltransferase 
can transfer Neu5Gc to newly synthesized glycoconju-
gates. Finally, Neu5Gc is expressed on the cell surface 
[41]. Exogenous Neu5Gc that is absorbed into the body 
is incorporated into glycosides, while the free form of 
Neu5Gc is utilized by intestinal microorganisms or 
rapidly cleared by the kidneys through urine [45]. Fur-
thermore, the Neu5Gc level in the human body usually 
remains low [36], so physiological mechanisms must 
prevent excessive accumulation. Enzyme mechanisms 
have been found in human cells that convert Neu5Gc to 
N-glycolyl mannosamine, N-glycolyl glucosamine, and 
finally N-glycolyl glucosamine 6-phosphate. Irreversible 
de-N-glycosylation of N-glycolyl glucosamine 6-phos-
phate forms the ubiquitous metabolite glucosamine 
6-phosphate  (GlcNH2−6-P), which can enter glycolysis 
through further conversion to fructose 6-phosphate, 
glucose 6-phosphate, and glycolic acid. These metabo-
lites can enter the citric acid cycle through glyoxylic 

Fig. 1 Schematic diagram of the reproductive selection by human Sia. CMAH (−/−) females develop antigenic immunity to Neu5Gc-expressing 
sperm produced by CMAH (+/−) or CMAH (+/+) males due to the presence of anti-Neu5Gc antibodies. In addition, CMAH (−/−) females favor 
the sperm produced by CMAH (−/−) males. This reproductive conflict will be conducive to the constant rise and fixation of CMAH (−) allele 
frequencies in the population
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acid, ultimately maintaining exogenous Neu5Gc at a 
healthy level (Fig.  2) [45]. The study also clarified the 
heterogeneous expression of Neu5Gc in tissues and 
cells, which will provide clues for the study of specific 
target antigens for tumors or autoimmune diseases 
[36].

The immune damage of Neu5Gc to the human 
brain
Neu5Gc aggravates the risk of immune damage 
to the blood–brain barrier
Unlike other heteroglycans, Neu5Gc is characterized 
by its dietary source, antigenicity of the monomer itself, 
and human cell surface abundance, so its deficiency may 

cause extensive immunological effects in the human body 
[46]. Although human metabolism cannot discriminate 
between Neu5Ac and Neu5Gc, the human immune sys-
tem can. Humans in a clinical trial contained different 
levels and types of circulating Neu5Gc-specific immuno-
globulin [47, 48]. Human anti-Neu5Gc antibodies inter-
act with Neu5Gc to promote chronic inflammation and 
ultimately lead to the occurrence and development of 
various human diseases [49]. The ability of exogenous Sia 
to cross the blood–brain barrier (BBB) and incorporate 
into Sia-sugar conjugates in different brain regions has 
been observed by oral and intravenous administration of 
radiolabeled Sia in rodents and newborn pigs [50, 51]. It 
can be inferred from isotopic studies that dietary-derived 

Fig. 2 Pathway of uptake and expression of Neu5Gc in human cells. Neu5Gc is expressed on the surface of human cells mainly 
through the processing and integration of lysosome, nuclear, and Golgi bodies
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Sia first enters the blood and crosses the BBB by diffu-
sion or by protein receptor-mediated processes. In the 
brain, dietary Neu5Gc can be incorporated into impor-
tant regions of the central nervous system (CNS), such 
as the BBB and axon-myelin units, creating targets for 
anti-Neu5Gc antibodies and resulting in changes in BBB 
permeability and instability of axon-myelin coupling [52].

Immune damage to the blood–brain barrier leads 
to neuroinflammation
Under normal circumstances, the brain is separated 
from the rest of the body by the BBB and therefore has 
immune privilege. However, in some pathological cases, 
the BBB integrity will be damaged, which manifests as 
increased permeability, thus enabling communication 
between the peripheral and central immune system [53]. 
Inflammation is a major factor affecting the structure and 
function of the BBB [54]. Studies have shown that biolog-
ical mediators secreted into the blood during peripheral 
chronic inflammation may damage the BBB, trigger-
ing CNS diseases [55]. A damaged BBB leads to entry 
of other systemic myeloid cells into the CNS, thereby 
enhancing brain inflammation [56]. Increased neurode-
generation has been observed in an animal model with 
persistent inflammatory neurodegeneration after periph-
eral inflammatory stimulation [57].

Another possible way in which the peripheral and cen-
tral immune systems interact is via neurotransmission. 
Rodent models have indicated that the vagus nerve is 
capable of transmitting information about the inflam-
matory state of the body to the brain and increases the 
levels of brain cytokines in the case of persistent periph-
eral inflammation [58]. Proinflammatory cytokines 
lead to the activation of neurogliocyte and perivascular 
macrophages, initiating or contributing to neuroinflam-
mation. Enhanced neuroinflammation promotes the 
development of several highly prevalent neurological dis-
eases, mainly Alzheimer’s disease (AD) [59], Parkinson’s 
disease [60], and multiple sclerosis (MS) [53].

Neu5Gc damaged the normal physiological function 
of Neu5Ac
The role of Neu5Ac in brain development
Studies have shown that Neu5Ac plays an important 
role in brain development. Neu5Ac is involved in the 
formation of ganglioside GM1 and polysialic acid (poly-
Sia, PSA), which take part in neuronal differentiation, 
growth, and regeneration and support synaptic transmis-
sion, thus affecting learning and cognitive ability [61]. In 
the process of learning and cognition, neurons need to 
exchange a great deal of information quickly in the brain. 
This cannot be achieved without the synaptic interaction 
between neurons [62]. The formation of new synapses 

is a hallmark of learning. Sias in human body, mainly 
Neu5Ac, are essential for synapse formation. In a mouse 
model, exogenous supplementation of Neu5Ac during 
pregnancy increased the level of Neu5Ac in the cerebral 
cortex and hippocampus, brain areas involved in learn-
ing and memory, of offspring mice. The offspring mice 
performed better in learning and cognitive experiments 
[61, 63, 64]. In addition, if the gene N-acetylneuraminate 
synthase (NANS) encoding Neu5Ac synthase is mutated, 
severe developmental delay occurs in infants [65], sug-
gesting that the endogenous synthesis of Neu5Ac is criti-
cal for brain development.

However, if exogenous Neu5Ac is directly given to off-
spring mice after birth, the learning and cognitive abil-
ity of offspring mice does not improve [61]. This may be 
because brain development is time-dependent. Once the 
brain’s growth has passed its peak, it cannot be rebooted, 
which can have a big impact on cognitive function in 
adulthood [66]. And the synthesis and transport of 
Neu5Ac play a role mainly in the early ontogenetic stage 
of rapid brain development.

Incorporation of Neu5Gc disrupts the normal physiological 
function of Neu5Ac
Observational and clinical studies have shown that a 
diet rich in red meat increases the risk of neurodegen-
erative diseases [67]. In this part, we will try to explain 
from the perspective that the incorporation of Neu5Gc 
in the diet will destroy the normal physiological func-
tion of Neu5Ac. Neural cell adhesion molecule (NCAM) 
is an important molecule for Neu5Ac to function in the 
brain. PSA-NCAM acts as a modulator of brain plastic-
ity, promoting repair and regeneration after neurological 
damage [68]. PSA deficiency causes severe neural pheno-
types in mice, such as defective neuronal network con-
nectivity, abnormal localization of neurons and glial cells, 
and glial cell differentiation, which can be alleviated by 
depletion of NCAM [69]. These severe phenotypes sug-
gest that Neu5Ac is closely associated with NCAM and 
plays an important role in normal physiological function. 
In addition, PSA can combine neurotrophins such as 
brain-derived neurotrophic factor (BDNF), nerve growth 
factor, neurotrophin-3, and neurotrophin-4. Combined 
with polySia, BDNF can bind to and activate its recep-
tors [70]. However, the presence of Neu5Gc has been 
reported to affect the degradation of PSA by an endog-
enous sialidase, Neu1. And Neu1-induced BDNF-related 
release is inhibited [71].

Anti‑Neu5Gc antibody affects the normal physiological 
function of Neu5Ac
Dietary Neu5Gc and circulating anti-Neu5Gc antibod-
ies may interact in central and peripheral nervous system 
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and influence the occurrence and development of CNS 
diseases, suggesting that a diet high in Neu5Gc may be 
an overlooked environmental risk factor for CNS dis-
eases [72]. MS is the most common demyelinating dis-
ease of the CNS. Its pathogenesis is caused by multiple 
factors. Interestingly, this disease seems to be found only 
in humans, and not in chimpanzees [73]. Therefore, It 
has proposed that dietary Neu5Gc is incorporated into 
the nervous system, and because it is a xenoantigen, 
the immune system produces anti-Neu5Gc antibodies 
against it [73]. These circulating antibodies may cause 
damage to the BBB, myelin sheath, axon, and other struc-
tures in the CNS, making the CNS environment unstable, 
thus raising the risk of MS [73]. Current study suggested 
that the CNS damage in MS is mainly caused by immune 
factors. Primary infection of infectious mononucleosis 
(IMN) may impair the integrity of BBB, during which 
anti-Neu5GC antibodies increase. This phenomenon is 
also consistent with the viewpoint of BBB damage men-
tioned above [74]. What’s more, Boligan et al. have found 
that IgG deposition can be observed in the lesion sites 
of MS, and that IgG antibodies in the serum and CSF of 
MS patients show increased reactivity to Neu5Gc and 
Neu5Ac [47]. Notably, a high degree of overlap in IgG 
reactivity to Neu5Gc and Neu5Ac in individual patients 
was found in this study. Neu5Gc and Neu5Ac are highly 

similar in structure, only differing by one oxygen atom, so 
it is reasonable to suspect that the increased IgG reaction 
may be caused by cross-immune reaction (Fig. 3) [75].

Neu5Gc and brain function
Abnormal sialylation and impaired brain function after loss 
of Neu5Gc
Brain gangliosides and Neu5Ac play crucial roles in 
cell–cell interactions, neuronal growth, modification 
of synaptic connectivity, and memory formation [76]. 
However, the accumulation of Neu5Gc, which is only 
one oxygen atom apart, in the brain causes abnormal 
sialylation. Mice with abnormal cerebral sialylation 
developed myelin deformity, with 40% reduction of 
major myelin proteins, 30% reduction of myelinated 
axons, 33% reduction of myelin thickness, and dis-
ruption of nodes of Ranvier molecules. What’s more, 
these mice exhibited impaired motor coordination, 
gait disturbances, and severe cognitive impairment 
[77]. In addition, Since Neu5Gc cannot be synthe-
sized in humans and can induce an immune response, 
its presence is important for controlling sialylation of 
complex glycoproteins [78]. In a study, the Sia state of 
macrophages was regulated by feeding exogenous-free 
Sia (Neu5Ac, Neu5Gc) and sialidase inhibitors to cells, 
and their effects on cell mechanics and function were 

Fig. 3 Schematic diagram of cross-reaction between anti-Neu5Gc antibody and Neu5Ac. As an important component of GM1, Neu5Ac is highly 
similar to Neu5Gc in structure. There may be cross-reaction between anti-Neu5Gc antibodies and Neu5Ac, resulting in nerve cell damage
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detected [79]. Over-activated microglial phagocytosis 
of neurons and synapses could lead to neurodegenera-
tive diseases, while high sialylation of the neuron cell 
surface inhibits microglial phagocytosis of such neu-
rons [80]. Neu5Gc-modified transferrin exacerbates 
iron loading-associated amyloid-β cytotoxicity which is 
rescued by Neu5Ac-modified transferrin [72].

Loss of endogenous Neu5Gc and connectivity in the brain
A recent issue of the journal Science has suggested that 
the key to brain function is the communication between 
different brain regions, in other words, brain connec-
tivity [81]. In the human cortex, excitation-excitatory 
synaptic dynamics differ from those in the mouse cor-
tex and vary with the depth of second and third lay-
ers [82]. Without smoothly functioning connections, 
brain function will be greatly affected. The early stages 
of infant neurodevelopment are critical for establish-
ing neural structures and synaptic connections, and 
breast milk is rich in Neu5Ac, which is compatible 
with the needs of rapid brain development in infancy 
[61, 63, 64, 83]. Diets rich in Sia can increase the level 
of Sia in the brain of newborn piglets, increase the 
expression level of learning-related genes, and enhance 
learning and memory ability [83]. Studies involving syn-
thetic Neu5Ac and Neu5Gc polymers have shown that 
mammalian and bacterial sialidase have a much lower 
ability to hydrolyze α2–8-linked Neu5Gc at the non-
reducing end. The resistance of Neu5Gc-containing 
polySia to sialidase provides a possible explanation for 
the low level of Neu5Gc in vertebrate brains [84]. In a 
study, single oxygen atom changes were introduced into 
polySia by an exogenous non-neurogenic Sia, Neu5Gc, 
which induced resistance to polySia turnover induced 
by sialidase 1 and inhibited the release of brain-derived 
neurotrophins associated with it [71]. Neu5Gc on the 
surface of the macrophage can regulate phagocytosis 
and secretion of inflammatory factors by resisting siali-
dase 1-mediated polySia degradation [85]. The binding 
of Neu5Gc leads to increased resistance to sialidase and 
abnormal function of Sia-rich cells, which might influ-
ence the communication speed between neurons by 
affecting the Sia structure on the surface of neurons, 
and influence behavior and cognitive ability by affecting 
brain connectivity.

Neu5Gc affects brain aging and development
Humans and chimpanzees share > 99% residue identity 
in most proteins [86]. However, a marked decline in 
cognitive flexibility has been observed in chimpanzees 
at an average age of 22.5 years that is not observed in 
humans [87]. A rare genetic difference between humans 
and chimpanzees is the human-specific inactivation of 

the CMAH gene, which modifies Neu5Ac to Neu5Gc. 
Abnormal accumulation of Neu5Gc is correlated with 
the aging and abnormal development of the brain [88]. 
At present, cognitive dysfunction induced by human 
brain aging is an important cause of decline in qual-
ity of life. Neu5Gc-related Sia dysfunction may lead to 
sialylation in brain tissue and abnormal brain connec-
tivity [83], AD [72], and memory loss [88]. The evolu-
tionarily conserved brain-specific inhibition of Neu5Gc 
synthesis may indicate that its presence is toxic to the 
organ [9], and that the inactivation mutation in CMAH 
may have played a role in human brain evolution [89]. 
To explore the consequences of forced expression of 
Neu5Gc in the brain, a brain-specific CMAH trans-
genic mice model was established. Overexpression of 
Neu5Gc in the brain led to abnormal motor activity, 
impaired object recognition memory, and abnormal 
myelination of axons [88]. Neu5Gc is present at sig-
nificant levels in all dairy, including dairy-based infant 
formula, whereas only trace levels of Neu5Gc are pre-
sent in human breast milk [40]. High brain ganglioside 
and glycoprotein Sia concentrations in infants fed with 
human milk suggest increased synaptogenesis and dif-
ferences in neurodevelopment [90].

Prospects
First, Neu5Gc overexpression in the brain results in 
abnormal locomotor activity, impaired object recog-
nition memory, and abnormal axon myelination [88]. 
Second, inhibition of Neu5Gc synthesis in the brains of 
most animals is an important prerequisite for normal 
brain function [88], and Neu5Gc levels are very low in 
the brains of all tested vertebrates [45]. What’s more, 
the timing of human brain evolution coincides with the 
time of the inhibition of Neu5Gc synthesis in humans 
[10]. Much circumstantial evidence has suggested that 
Neu5Gc inhibits brain function. At present, the lit-
erature shows that Neu5Gc in the human body mainly 
comes from diet, virus carriers, and biological prod-
ucts and mainly include red meat and dairy products. 
Ingested Neu5Gc is excreted by the kidneys, and only 
a small part is deposited in tissues such as the heart, 
liver, and muscle [85]. Current studies have found that 
endogenous Neu5Gc does not exist in the brain tissue 
of human or CMAH (− / −) mice, or that the concen-
tration is very low. But some studies have shown that 
Neu5Gc has a strong ability to break through the BBB 
[91]. In view of the potential risk of Neu5Gc to brain 
development, as well as the characteristics of Neu5Gc 
intake and metabolism in the human population, a diet 
low in Neu5Gc-rich foods (such as red meat and dairy 
products) is a potential topic of research for preventing 
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Neu5Gc accumulation in the human body and reduc-
ing the risk of brain aging in the future. Especially for 
neonates with rapid brain development, the control of 
Neu5Gc in dairy products may minimize the adverse 
effects of Neu5Gc on the brain and ensure a better start 
in early brain development (Fig. 4).
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