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Abstract 

Ischemic stroke triggers inflammation that promotes neuronal injury, leading to disruption of neural circuits and exac-
erbated neurological deficits in patients. Immune cells contribute to not only the acute inflammatory responses 
but also the chronic neural repair. During the post-stroke recovery, reparative immune cells support the neural circuit 
reorganization that occurs around the infarct region to connect broad brain areas. This review highlights the time-
dependent changes of neuro-immune interactions and reorganization of neural circuits after ischemic brain injury. 
Understanding the molecular mechanisms involving immune cells in acute inflammation, subsequent neural repair, 
and neuronal circuit reorganization that compensate for the lost brain function is indispensable to establish treatment 
strategies for stroke patients.

Keywords  Ischemic brain injury, Neural repair, Inflammation, Reparative immune cells, Neural circuit reorganization

Background
Stroke is the third leading cause of death worldwide and 
a major cause of severe disability over the long term [1]. 
Ischemic stroke, which accounts for approximately 80% 
of stroke cases, is caused by occlusion or stenosis of 
the cerebral artery [2]. Currently, treatment options for 
ischemic stroke are limited, with intravenous thromboly-
sis using recombinant tissue plasminogen activator (rt-
PA) and thrombectomy being the primary approaches. 
However, these treatments can only be applied within a 
narrow time window after stroke onset, restricting their 
usage to about 5 to 10% of cases [3, 4]. In the long term, 
rehabilitation, which focuses on enhancing the spon-
taneous recovery of brain function through training to 
relearn skills lost after a stroke, remains the only available 
approach, as universally effective treatments for all stroke 
patients have yet to be developed.

Neurons in the ischemic core within the infarct 
region have lost their supply of oxygen and glucose, 
leading to calcium ion influx, reactive oxygen spe-
cies (ROS) generation, and mitochondrial dysfunc-
tion, which ultimately result in necrotic neuronal death 
[5–7]. Necrosis of neurons activates the surrounding 
microglia, the resident immune cells in the brain, and 
disrupts the blood–brain barrier (BBB), leading to infil-
tration of neutrophils and macrophages several hours 
after a stroke [8]. T lymphocytes are activated by the 
cytokines and chemokines produced by infiltrating 
myeloid cells and contribute to post-stroke inflam-
mation. Inflammation and BBB breakdown increase 
microvascular permeability, leading to brain tissue 
swelling [9]. This acute inflammation and edema cause 
further damage to neurons surrounding the infarct 
lesion (penumbra), contributing to poor patient out-
comes. The acute inflammatory response resolves 
approximately 1 week after the ischemic stroke [10], 
followed by the long-term inflammation and neural 
recovery phase. After the acute inflammation phase, 
activated resident and infiltrating immune cells in the 
penumbral region shift from promoting inflamma-
tion to supporting neural repair processes, such as 
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enhancing neuronal survival, axon sprouting, remyeli-
nation, and synaptogenesis. The recovery phase con-
cludes within several months to a few years, leaving any 
remaining neurological deficits as lasting sequelae [11].

After ischemic injury, it has been reported that neu-
ral circuits undergo reorganization, contributing to the 
recovery or compensation of lost neurological function. 
Rehabilitation interventions within approximately 3 
months after a stroke can help a patient partially regain 
mobility and daily life activities [12–15], and it has been 
reported that rehabilitative training promotes network 
remodeling, including distant regions both within the 
cortex and in subcerebral areas [16]. In addition to neu-
ronal repair facilitated by reparative immune cells, activ-
ity-dependent neural circuit compensation is thought 
to occur. Advances in functional neuroimaging tech-
niques—such as functional magnetic resonance imaging 
(fMRI) [17, 18], voltage-sensitive dye (VSD) imaging [19], 
and calcium imaging [20]—have enhanced our under-
standing of the dynamics of functional connectivity after 
a stroke. To improve the functional prognosis of stroke 
patients, two key considerations can be proposed as 
therapeutic targets: how to protect intact neural circuits 
and how to promote the remodeling of neural circuits to 
compensate for those that are lost. Treatments target-
ing immune cells or promoting neural circuit remod-
eling through axonal growth and neurogenesis are still 
in the early stages of development [21, 22]. Elucidating 
the mechanisms of time-dependent interactions between 
immune cells and neurons, as well as the processes of 
neural circuit reorganization after brain injury, will bring 
significant advances in treatment for stroke patients.

Time‑dependent roles of immune cells in the ischemic 
brain
Sterile inflammation induced by DAMPs after stroke
In the focal ischemic area, necrotic cells release endog-
enous molecules, including damage-associated molecu-
lar patterns (DAMPs), such as high mobility group box 1 
(HMGB1), peroxiredoxin family (PRXs), heat shock pro-
teins, and adenosine triphosphate (ATP) [23–25]. These 
intracellular molecules activate brain-resident and infil-
trating immune cells via pattern recognition receptors 
(PRRs). Toll-like receptors (TLRs), mainly TLR2 and 
TLR4, and the receptor for advanced glycation end-prod-
ucts (RAGE) are key receptors that recognize DAMPs 
derived from necrotic neurons and glial cells. Activated 
immune cells produce various inflammatory cytokines, 
contributing to secondary damage to surviving neurons 
in the peri-infarct area. Such post-stroke inflammatory 
responses, occurring in the absence of pathogens, are a 
typical example of sterile inflammation (Fig. 1).

Acute inflammatory response of each immune cell type
Microglia, the resident immune cells in the brain, are 
quickly activated in response to ischemic stroke [26]. 
Activated microglia produce cytokines, such as tumor 
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), 
which exert direct cytotoxic effects and phagocytose 
damaged neurons in the peri-infarct.

Neutrophils are the first immune cells to infiltrate 
through the disrupted BBB, within 6 h after a stroke [8, 
27, 28], with their accumulation peaking within a few 
days [29–31]. Neutrophils exacerbate injury of peri-
infarct cells by releasing inflammatory cytokines, such 
as TNF-α, IL-1β, and IL-6 [32, 33]. Extracellular traps 
released from activated neutrophils in the lesion site 
reduce neovascularization and increase BBB damage 
[34–36]. The infiltration of neutrophils requires the adhe-
sion pair very-late-antigen-4 (VLA-4) and vascular cell 
adhesion molecule 1 (VCAM-1). The antibody-mediated 
depletion of infiltrating neutrophils improves neurologi-
cal outcomes and reduces infarct volume in the acute 
inflammatory phase [8].

Monocytes and macrophages then infiltrate into 
ischemic regions following BBB breakdown, a major 
post-ischemic event, and further produce pro-inflam-
matory factors. Infiltrating macrophages are activated 
by recognizing inflammatogenic DAMPs via TLRs or 
RAGE [37]. Signaling through adapter molecules, such 
as MyD88 and TRIF, in the downstream cascade of TLRs 
activates pathways leading to the production of inflam-
matory cytokines via NF-κB and the induction of inter-
feron pathways [25, 38].

T lymphocytes infiltrate the ischemic brain after mye-
loid cells and are activated by their released cytokines. 
Previous studies have reported that T lymphocytes cause 
harmful effects for acute inflammation by producing 
cytokines such as interferon-γ (IFNγ), IL-17, or IL-21, 
thereby exacerbating post-stroke inflammation and 
pathologies [39–42].

Reparative roles of immune cells following the acute 
inflammatory phase
Some activated immune cells change their roles from 
acute inflammation to chronic neural repair during post-
stroke recovery (Fig. 2). Microglia also change their func-
tions from pro-inflammation by producing cytokines and 
chemokines to neural repair by producing neurotrophic 
factors [43]. Reparative microglia produce neurotrophic 
factors, including osteopontin (OPN), insulin-like 
growth factor 1 (IGF1), fibroblast growth factors (FGFs), 
hepatic growth factor, and growth differentiation fac-
tor 15 (GDF15), within a few days following a stroke. 
These factors play crucial roles in generating beneficial 
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neuro-immune interactions for white matter repair [44–
46]. It has also been reported that microglia are involved 
in the removal of unnecessary synapses after a stroke, 
contributing to increased synaptic turnover [47].

Macrophage infiltration peaks a few days after stroke 
onset and decreases within approximately 1 week [32, 
33], during which the role of macrophages transitions 
from promoting inflammation to facilitating tissue repair 
between 3 and 6 days post-stroke [48, 49]. In the recov-
ery phase, the scavenger receptors MSR1 and MARCO, 
expressed by reparative macrophages, play an important 
role in removing DAMPs from ischemic brain tissue [48]. 
Reparative macrophages also release neurotrophic fac-
tors, contributing to brain tissue reconstruction and neu-
ronal repair [50].

Immunosuppressive regulatory T (Treg) cells, a subpop-
ulation of T lymphocytes, infiltrate into the injury site 
within 1 to 2 weeks after ischemic stroke and accumulate 
for more than 1 month after stroke onset [51–54]. Treg 
cells reduce harmful inflammation caused by microglia 
and macrophages by releasing various anti-inflammatory 

cytokines such as IL-10, and TGF-β [51, 53, 55, 56]. 
Amphiregulin, produced by Treg cells, is a key molecule 
that suppresses astrogliosis and reduces neuronal damage 
[51]. Treg cells also produce osteopontin, which enhances 
the activity of reparative microglia, promoting oligoden-
drogenesis and white matter repair [57].

Reorganization of neural circuits
Morphological changes in neural circuits after brain injury
The cerebral cortex plays a crucial role in higher brain 
functions, such as motor control and sensory percep-
tion, by forming complex neural circuits through con-
nections among neurons within functionally specialized 
cortical areas, as well as between cortical and subcorti-
cal neurons. The impact of neuronal death caused by 
focal ischemic stroke is not limited to the infarcted cer-
ebral region; it also broadly affects neural circuits con-
nected in this area. For instance, it has been reported 
that thalamocortical neurons projecting to the damaged 
cortical regions disappear within 48 h after a stroke [58]. 
After the acute phase, during which dysfunction of the 

Fig. 1  Sterile inflammation induced by DAMPs during acute inflammation phase. Focal vascular occlusion immediately induces necrotic 
neuronal death due to the lack of oxygen and glucose supply. Microglia, brain-resident myeloid cells, are activated in response to neuronal death 
and contribute to peri-infarct neuronal damage by producing cytokines such as TNFα and IL-1β, which exert direct neurotoxic effect or exacerbate 
cerebral inflammation and edema. Neutrophils and macrophages infiltrate through the disrupted BBB and are activated by DAMPs released 
from necrotic neurons to produce cytokines such as TNFα, IL-1β, and IL-6. T lymphocytes infiltrate following myeloid cells, are activated by cytokines 
released from myeloid cells, and produce IFNγ, IL-17, and IL-21, leading to harmful effects
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Fig. 2  Reparative immune cell responses during recovery phase in the peri-infarct region. During the recovery phase, immune cells change 
from inflammatory to reparative functions. Reparative macrophages remove DAMPs via scavenger receptors such as MSR1 and MARCO, 
while microglia contribute to neural circuit reorganization by pruning unnecessary synapses. Both reparative macrophages and microglia produce 
neurotrophic factors, including OPN and IGF1, which support the protection and repair of damaged neurons in the peri-infarct region. Treg cells 
that infiltrate 1–2 weeks after ischemic injury mitigate harmful inflammation caused by macrophages and microglia. Treg cells also promote 
the activity of reparative microglia by producing OPN and suppress astrogliosis by producing amphiregulin

Fig. 3  Morphological changes in neurons after ischemic brain injury. After an ischemic stroke, neural reorganization is observed as morphological 
changes in neurons, occurring not only in the peri-infarct region but also in the intact contralateral region and subcerebral areas. An increased 
rate of spine turnover is evident in both the penumbra and the contralateral regions during the first week following a stroke. In the subsequent 
weeks after ischemic injury, dendritic length also increases in the penumbra and contralateral side. Neurons projecting from the contralateral 
cortex to the ischemic core sprout axons into the peri-infarct region and survive, whereas thalamocortical neurons are lost. Axons of CST neurons 
in the undamaged hemisphere extend to the contralateral side at the spinal level, contributing to the compensation of motor impairments 
after a stroke
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neural circuit occurs, reorganization of the neural circuit 
is facilitated through synaptogenesis, dendritic growth, 
and axonal sprouting (Fig. 3).

After focal ischemia, reduction and elongation of 
dendritic spines are observed in the peri-infarct region 
within 24 h [59]. Subsequently, within 1 week, increased 
formation and elimination of spines, indicating an ele-
vated turnover rate, occur in both the infarct site [19] 
and in the contralateral cerebral area [60]. In this period, 
axonal sprouting begins in the peri-infarct region [61] 
and remains robustly present even after 1 month [62]. 
The period when the spine turnover rate and axonal 
sprouting increase, indicating active reorganization 
of neural circuits, overlaps with the acute inflamma-
tion phase. Neurons projecting from the contralateral 
cortex to the ischemic core survive for 48 h after stroke 
[58]. Additionally, callosal projections to the injured site 
exhibit axonal sprouting in the perilesional area 4 weeks 
after thermocoagulation injury [63]. Descending axons 
from the undamaged motor cortex, called corticospinal 
tract (CST), sprout collaterals to the contralateral side, 
which has lost its neural connections [64, 65]. In non-
human primates, ischemic injury to the primary motor 
cortex hand area increases reciprocal connections with 
the ventral premotor cortex and primary somatosensory 
cortex [66]. A localized ischemic stroke in a hemisphere 
alters even those connections between distant corti-
cal areas and those long-projecting to the subcerebral 
regions, which may contribute to the compensation of 
functional neural circuits.

Remodeling of functional connectivity after brain injury
Neuroimaging techniques such as fMRI and VSD have 
been used to investigate cerebral functional connectiv-
ity after ischemic brain injury [67]. A study combin-
ing optogenetic stimulation using channelrhodopsin-2 
(ChR2) and VSD demonstrated that cortical functional 
connectivity globally decreases 1 week after stroke onset 
but partially recovers by 8 weeks [68]. Focal ischemic 
injury to the primary somatosensory cortex (S1) induces 
redistribution of sensory responses, not only within the 
injured S1 [69] or contralateral intact S1 [60] but also 
extending to the motor cortex [70]. Intracortical micro-
stimulation (ICMS) revealed that cortical motor output 
involves a reduced area for complex movements, whereas 
the area for simple movements expands [71]. fMRI is a 
non-invasive imaging technique that measures brain 
activity by detecting the temporal correlation of blood-
oxygenation-level-dependent signals, making it suitable 
for use in humans. Many studies using fMRI in human 
stroke patients have revealed changes in functional con-
nectivity between cortical regions [17]. Abnormal syn-
chronization between cortical and subcortical structures, 

including the striatum, thalamus, and hippocampus, 
observed 2 weeks after a stroke gradually recovers over 
time [72]. Although reports on morphological and func-
tional connectivity have demonstrated that neural net-
works undergo reorganization after stroke, it has been 
suggested that motor impairments may also involve 
newly developed abnormal interactions between corti-
cal regions distant from the ischemic lesion. In the post-
stroke brain, identifying functional and structural neural 
circuits is being explored as a means to develop novel 
therapeutic interventions [73, 74].

Therapeutic interventions to promote neural circuit 
reorganization after stroke
Rehabilitative treatments
Rehabilitative intervention is widely implemented to 
improve motor dysfunction after a stroke. Patients who 
started rehabilitative training within a few months after 
a stroke showed improvements in motor function [12–
15]. It has also been reported that rehabilitation within 
6 months after a stroke is positively correlated with 
long-term mortality [75]. There are reports that initiat-
ing training within 24 h after ischemic brain injury may 
be harmful, but consensus indicates that starting reha-
bilitation within 2 weeks is highly effective [76]. Such 
therapeutic intervention is thought to assist in the reor-
ganization of neural circuits during the recovery phase, 
and it has been demonstrated that they actually promote 
structural and functional changes in neural network.

The increasing dendritic arborization of layer 3 or layer 
5 pyramidal cells in the motor cortex on the contralateral 
side of an ischemic lesion is enhanced both by rehabili-
tation [77, 78] and by housing in an enriched environ-
ment [79]. In spine turnover after a stroke, newly formed 
spines become more stable through rehabilitative train-
ing [80]. Forced limb use after intracerebral hemorrhage 
promotes axonal sprouting from the motor cortex to the 
red nucleus and facilitates the recovery of cortical motor 
function [81]. Constraint-induced movement therapy 
(CIMT) promotes an increase in the sprouting of CST 
neuron axons crossing to the contralateral side of the cer-
vical spinal cord [64]. It also enhances the number of cor-
ticospinal projections originating from the peri-infarct 
motor cortex, contributing to functional recovery [82]. 
Chemogenetic stimulation specific to CST neurons, com-
bined with rehabilitative training, enhances the midline-
crossing sprouting of CST fibers, resulting in improved 
motor function recovery [83]. These results indicate 
that activity-dependent neural circuit reorganization is 
essential for functional recovery. In humans, advanced 
MRI techniques have demonstrated that rehabilitation 
positively influences the reorganization of structural and 
functional connection [84]. Despite the establishment of 
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effective rehabilitative treatments, many stroke patients 
continue to experience long-term neurological deficits. 
In fact, several large intervention trials targeting motor 
recovery have shown improvements in participants’ 
motor performance; however, in most cases, the degree 
of improvement was trivial [85]. These findings suggest 
that rehabilitation aimed at promoting spontaneous cir-
cuit remodeling after brain injury has limitations in fully 
restoring brain function.

Therapeutic approaches for axonal regeneration 
and synaptic plasticity based on molecular mechanisms
Research investigating the molecular mechanisms under-
lying neural circuit remodeling is also progressing, and 
several neurotrophic factors critical for axonal regrowth 
have been identified. Transcriptome analysis of corti-
cal neurons that project axons near the lesion site fol-
lowing ischemic injury revealed increased expression 
of growth factors, cell adhesion molecules, axon guid-
ance molecules, and cytoskeletal modifiers in mice [62]. 
Brain-derived neurotrophic factor (BDNF) and insulin-
like growth factor (IGF-1) are well-known neurotrophins. 
It has been reported that various neurotrophins are 
induced by exercise therapy [86, 87]. Expression levels of 
Lingo1 and BDNF, genes associated with plasticity and 
axonal sprouting, fluctuate based on timing after cerebral 
infarction and the target projection site [88], suggesting 
that axonal regeneration is mediated by neurotrophins in 
an activity-dependent manner. A treatment combining 
IGF-1 and OPN promotes CST fiber regeneration and 
CST-dependent functional restoration [89].

Axon regeneration in the central nervous system is 
limited, partly due to axon growth inhibitors such as 
Nogo-A, myelin-associated glycoprotein, oligodendro-
cyte-myelin glycoprotein, chondroitin sulfate proteo-
glycans, RhoA, and semaphorin 3A, whose expression 
is elevated around the injury site [64, 90]. Therapies 
aimed at promoting neural circuit reorganization by 
suppressing these axon growth inhibitors are being 
developed. Injecting chondroitinase ABC or anti-Nogo-
A antibodies into the spinal cord increases the number 
of sprouting axons from the intact cerebral cortex to 
the spinal cord in rats after stroke [91–93]. Addition-
ally, injecting chondroitinase ABC into the penumbral 
region surrounding the infarct enhances synaptic den-
sity and facilitates motor recovery [94]. The adminis-
tration of a semaphorin 3A inhibitor to the peri-infarct 
area promotes axonal growth and improves neurologi-
cal deficits after ischemic brain injury [95]. However, 
clinical trials of myelin-associated glycoprotein, neurite 
outgrowth inhibitor proteins, and chondroitin sulfate 
proteoglycans have shown limited therapeutic effi-
cacy [96]. Given that functional recovery requires the 

establishment of appropriate neural circuits, combining 
treatments that enhance neuronal plasticity with stimu-
lation therapies, such as transcranial magnetic stimula-
tion, and rehabilitative interventions may be necessary. 
Among such approaches, edonerpic maleate has been 
shown to promote neuronal plasticity through facili-
tating experience-driven synaptic glutamate AMPA 
receptor delivery, thereby accelerating motor func-
tion recovery after cortical injury in rodents and non-
human primates [97].

Conclusions
Elucidating the mechanisms of neural circuit destruc-
tion caused by immune inflammation following cer-
ebral infarction and the subsequent activity-dependent 
reorganization of circuits, which involves reparative 
immune cells, is crucial for developing treatments 
for stroke patients. Although substantial progress 
has been made in understanding the biphasic neuro-
immune interaction, effective therapeutic approaches 
for ischemic stroke have yet to be established. In the 
future, integrating the microscopic understanding of 
molecular mechanisms involved in neural repair—
including neurons, immune cells, and glial cells—with 
the macroscopic perspective of functional connectiv-
ity remodeling will be a critical challenge for advancing 
approaches to neural recovery after ischemic stroke.
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